諸城市吉豐機械科技有限公司作者
A2O法又稱AAO法,是英文Anaerobic-Anoxic-Oxic*一個字母的簡稱(厭氧-缺氧-好氧法),是一種常用的污水處理工藝,可用于二污水處理或三污水處理,以及中水回用,具有良好的脫氮除磷效果。在傳統A2O工藝的單泥系統中高效地完成脫氮和除磷兩個過程,就會發生各種矛盾沖突,比如泥齡的矛盾、碳源競爭、硝酸鹽及溶解氧(DO)殘余干擾等。
一、傳統A2O工藝存在的矛盾
1、污泥齡矛盾
傳統A2/O工藝屬于單泥系統,聚磷菌(PAOs)、反硝化菌和硝化菌等功能微生物混合生長于同一系統中,而各類微生物實現其功能*大化所需的泥齡不同:
1)自養硝化菌與普通異養好氧菌和反硝化菌相比,硝化菌的世代周期較長,欲使其成為優勢菌群,需控制系統在長泥齡狀態下運行。冬季系統具有良好硝化效果時的污泥齡(SRT)需控制在 30d 以上;即使夏季,若SRT<5 d,系統的硝化效果將顯得其微弱。
2)PAOs 屬短世代周期微生物,甚至其*大世代周期(Gmax)都小于硝化菌的*小世代周期(Gmin)。
從生物除磷角度分析富磷污泥的排放是實現系統磷減量化的*一渠道。
若排泥不及時,一方面會因PAOs的內源呼吸使胞內糖原消耗殆盡,進而影響厭氧區乙酸鹽的吸收及聚-β-羥基烷酸(PHAs)的貯存,系統除磷率下降,嚴重時甚至造成富磷污泥磷的二次釋放;另一方面,SRT 也影響到系統內 PAOs 和聚糖菌(GAOs) 的優勢生長。
在30℃的長泥齡(SRT≈ 10d)厭氧環境中,GAOs 對乙酸鹽的吸收速率高于PAOs,使其在系統中占主導地位,影響 PAOs釋磷行為的充分發揮。
2、碳源競爭及硝酸鹽和DO殘余干擾
在傳統A2/O脫氮除磷系統中,碳源主要消耗于釋磷、反硝化和異養菌的正常代謝等方面,其中釋磷和反硝化速率與進水碳源中易降解部分的含量有很大關系。一般而言,要同時完成脫氮和除磷兩個過程,進水的碳氮比(BOD5 /ρ(TN))>4~5,碳磷比(BOD5 /ρ(TP))>20~30。
當碳源含量低于此時,因前端厭氧區 PAOs 吸收進水中揮發性脂肪酸(VFAs)及醇類等易降解發酵產物完成其細胞內 PHAs 的合成,使得后續缺氧區沒有足夠的優質碳源而抑制反硝化潛力的充分發揮,降低了系統對 TN 的脫除效率。
反硝化菌以內碳源和甲醇或 VFAs 類為碳源時的反硝化速率分別為 17~48 、120~900 mg/(g·d)。
因反硝化不*而殘余的硝酸鹽隨外回流污泥進入厭氧區,反硝化菌將優先于 PAOs 利用 環境中的有機物進行反硝化脫氮,干擾厭氧釋磷的正常進行,*終影響系統對磷的高效去除。
一般,當厭氧區的 NO3-N 的質量濃度>1.0 mg/L 時,會對 PAOs 釋磷產生抑制,當其達到 3~4 mg/L 時,PAOs 的釋磷行為幾乎*被抑制,釋磷(PO4 3--P)速率降 至 2.4 mg/(g·d)。
按照回流位置的不同,溶解氧(DO)殘余干擾主要包括:
1)從分子態氧(O2)和硝酸鹽(NO3-N)作為電子受體的氧化產能數據分析,以O2作為電子受體的產能約為 NO3-N的 1.5倍,因此當系統中同時存在O2和NO3-N時,反硝化菌及普通異養菌將優先以O2為電子受體進行產能代謝。
2)氧的存在破壞了PAOs釋磷所需的“厭氧壓抑”環境,致使厭氧菌以O2為終電子受體而抑制其發酵產酸作用,妨礙磷的正常釋放,同時也將導致好氧異養菌與PAOs進行碳源競爭。
一般厭氧區的DO的質量濃度應嚴格控制在0.2mg/L以下。從某種意義上來說硝酸鹽及DO殘余干擾釋磷或反硝化過程歸根還是功能菌對碳源的競爭問題。

下一篇:含油污水處理設備的工藝流程
全年征稿/資訊合作
聯系郵箱:hbzhan@vip.qq.com
- 版權與免責聲明
- 1、凡本網注明"來源:環保在線"的所有作品,版權均屬于環保在線,轉載請必須注明環保在線,http://www.kindlingtouch.com。違反者本網將追究相關法律責任。
- 2、企業發布的公司新聞、技術文章、資料下載等內容,如涉及侵權、違規遭投訴的,一律由發布企業自行承擔責任,本網有權刪除內容并追溯責任。
- 3、本網轉載并注明自其它來源的作品,目的在于傳遞更多信息,并不代表本網贊同其觀點或證實其內容的真實性,不承擔此類作品侵權行為的直接責任及連帶責任。其他媒體、網站或個人從本網轉載時,必須保留本網注明的作品來源,并自負版權等法律責任。
- 4、如涉及作品內容、版權等問題,請在作品發表之日起一周內與本網聯系,否則視為放棄相關權利。
產品推薦更多>>
-
型號:
-
型號:
-
型號:
-
型號:
-
型號:QXB15kw
-
型號: