測序策略
目前應用的兩種快速序列測定技術是Sanger等(1977)提出的酶法及Maxam和Gilbert(1977)提出的化學降解法。雖然其原理大相徑庭,但這兩種方法都是同樣生成互相獨立的若干組帶放射性標記的寡核苷酸,每組寡核苷酸都有固定的起點,但卻隨機終止于特定的一種或者多種殘基上。由于DNA上的每一個堿基出現(xiàn)在可變終止端的機會均等,因些上述每一組產物都是一些寡核苷酸混合物,這些寡核苷酸的長度由某一種特定堿基在原DNA全片段上的位置所決定。然后在可以區(qū)分長度僅差一個核苷酸的不同DNA分子的條件下,對各組寡核苷酸進行電泳分析,只要把幾組寡核苷酸加樣于測序凝膠中若干個相鄰的泳道這上,即可從凝膠的放射自影片上直接讀出DNA上的核苷酸順序。
一Sanger雙脫氧鏈終止法
Sanger法dna測序的試劑
引物
模板
dna聚合酶
放射性標記的dNTP
dNTP類似物
現(xiàn)行的邏終止法人加減法序列測定技術(Sacger和Coulson,1975)發(fā)展而來的。加減法引入了使用特異引物在DNA聚合酶作用下進行延伸反應、堿基特異性的鏈終止,以及采用聚丙烯酰胺凝膠區(qū)分長度差一個核苷酸的單鏈DAN等3種方法。盡管有了這些進展,但加減法仍然太不,也太不得法,因此難以廣為接受。直至引入雙氧核苷三磷酸(ddTBP)作為鏈終止劑(Sanger等,1977 ),酶法DNA序列測定技術才得到廣泛應用。2’,3’ddNTP與普通dNTP不同之處在同它們在脫氧核糖的3’ 位置缺少一個羥基。它們可以在DNA聚合酶作用下通過其5’ 三磷酸基團摻入到正在增長的DNA鏈中,但由于沒有3’羥基,它們不能同后續(xù)的dNTP形成磷酸二酯鏈,因此,正在增長的DNA鏈不可能繼續(xù)延伸。這樣,在DNA合成反應混合物的4種普通dNTP中加入少量的一種ddNTP后, 鏈延伸將與偶然發(fā)生但卻十分特異的鏈終止展開競爭,反應產物是一系列的核苷酸鏈,其長度取決于從用以起始DNA合成的引物末端到出現(xiàn)過早鏈終止的位置之間的距離。在4組獨立的酶反應中分別采用4種不同的ddNTP,結果將產生4組寡核苷酸,它們將分別終止于模板鏈的每一個A、每一個G或每一個T的位置上。
Sanger法DNA測序的試劑
1.引物
酶促測序反應中利用一個與模板鏈特定序列互補的合成寡核苷酸作為DNA合成的引物。在許多情況下,可將靶DNA片段克隆于M13噬菌體或噬菌粒載體,以取得單鏈DNA分子作為模板。但也可以采用Sanger 法商定變性雙鏈DNA模板的序列。在以上兩種情況下, 都可以采用能與位于靶DNA側翼的載體序列相退火的通用引物,而不必取得與未知DNA序列互補的引物。適于M13噬菌體重組克隆的通用測序引物一般長15-29 個核苷酸,并可與緊靠M13mp18噬菌體多克隆位點區(qū)的HindⅢ位點成M13mp19 噬菌體多克隆位點區(qū)的EcoRI位點的序列互補。這些引物同樣也可用于對克隆于pUC質粒的DNA進行“雙鏈"測序,并可從許多廠商中購置得到。此外,還有若干家公司出售一些引物,這些引物下為了對通過多種限制酶切位點克隆于不同質粒的靶DNA進行測序而設計的。
2.模板
如上所述,有兩類DNA可以用作Sanger 法測序的模板:純單鏈DNA和經過熱變性或堿變性的雙鏈DNA。采用通常從重組M13噬菌體顆粒中分離得到的單鏈DNA應中獲得數(shù)百個核苷酸的序列。如用變性雙鏈DNA用模板,則較難獲得這咱質量的結果。盡管采用雙鏈DNA模板的方法顯然既簡單又方便(Chen和Seeburg,1985),然而只是在不久前得到改進以后, 這一方法才發(fā)展到能夠獲得明確可信結果的水平。其中有兩個因素是至關重要的,這就是模板DNA的質量和所用DNA聚合酶的種類。小量制箅的質粒DNA常常被寡脫氧核糖核苷酸小分子、核糖苷酸及DNA聚合酶的抑制劑所污染,其中前兩種污染物可被用作隨機引物。結果,種種“鬼"帶、強終止現(xiàn)象,以及其他假象往往使測序凝膠含混不清、黯然失色。因此采用小量制備的質粒NDA來測定未知DNA克隆片段的序列,并不可取。然而,這類DNA常可作為對已經通過另一方法測定的序列進行進一步的合適模板。采用CsCl-溴化乙錠梯度平衡離心法來純化質粒DNA,測序的結果會好得多,但卻要耗費大量的人務和物力。模板鏈的每一個A、每一個G或每一個T的位置上。