ZZY型自力式壓力調節閥流量CV計算選型分析
ZZY型自力式壓力調節閥無需外加能源,利用被調介質自身能量為動力源,引入執行機構控制閥芯位置,改變兩端的壓差和流量,使閥前(或閥后)壓力穩定。具有動作靈敏,密封性好,壓力設定點波動等優點,廣泛應用于氣體、液體及蒸汽介質減壓穩壓或泄漏穩壓的自動控制。
本系列產品有單座(ZZYP)、套筒(ZZYM)、雙座(ZZYN)三種結構;執行機構有薄膜式、活塞式二種;作用型式有減壓用閥后壓力調節(B型)和泄壓用閥前壓力調節(K型)。產品公稱壓力等級有PN16、40、64;閥體口徑范圍DN20~300;泄漏量等級有Ⅱ級、Ⅳ級和Ⅵ級三檔;流量特性為快開;壓力分段調節從15~2500kPa。可按需要組合滿足用戶況要求。
是一種無需外加能源,利用被控介質自身能量當動力源、引入執行膜室產生推力,控制節流元件運動達到自動調節。具有測量、執行、控制的綜合功能。可在無氣、無電的場所。廣泛應用于石油、化工、電站、輕工、印染工業部門自控系統中各種設備氣體、液體及蒸汽介質的減速壓、穩壓(用于閥后壓力調節)泄壓、穩壓(用于閥前壓力調節)的自動控制。根據用戶不同的工況條件可選用不同的閥芯結構型式以及不同執行機構,以達到最佳的控制效果。
ZZY型自力式壓力調節閥流量CV計算選型分析
自力式調節閥門口徑時,需要考慮流體介質的主要流量、運行狀態下的最小流量值、壓力、壓力差、環境溫度、粘度以及介質相對密度等參數。同時也需要準確確定閥門前后的系統壓力,并計算出所需的流量指數KV值(或CV值),包括較大流量與少流量的情況。如果未經過穩定檢查的自力式調節閥選用了較大流量值,那么KV(或CV)值將比計算出的值大一到近二級。為確保企業的穩定生產,應選擇配備充足的流通能力的自力式調節閥門。一般來說,選擇的KV選/KV計應大于m,其中m為平行線流量特性為1.63,等百分數特性為1.97。
ZZY型自力式壓力調節閥流量CV計算選型分析自力式調節閥門口徑如何選擇?
選定自力式調節閥門口徑后,需要計算自力式調節閥門的相對行程安排(少較大開啟度),這應該處于平行線特性閥10-80%和等百分數特性閥30-90%的范圍內才能達到標準。對于一般的改造工程,如果沒有特別的原因需要進行準確度計算,通常會按照工藝管道管徑大小選閥,選用比管徑小一(或兩個級別)的自力式調節閥門。因為工藝管道自力式調節閥門口徑采用的是經濟流速(即風阻小)的流體介質,而自力式調節閥門則是節流閥門。其大小頭(變摩擦阻力)元件的流動速度要高于管道內的流速,因此,閥門口徑應稍小于管徑,以確保調整精度符合要求。有時,針對低壓蝶閥,也可以選擇與管道相同的口徑,因為調節蝶閥的主要工作是開啟度為70%。這樣選擇的自力式調節閥門口徑可以保證與管道口徑相一致,物質流通能力不受影響,一般可以滿足工藝生產規定。無論口徑如何選擇,自力式調節閥門的調整精度與操作質量都需要得到充分的保障。
ZZY型自力式壓力調節閥流量CV計算選型分析閥內件(Valve Trim)
閥內件是與流體直接接觸的閥內可拆卸的改變流通截面積和截流件導向等作用的零部件總稱,包括典型截流件的閥芯(Plug)和閥座(Seat),還包括套筒(Cage)、閥桿(Stem)以及減噪器(Flow divider)、抗空化氣蝕部件(AC-trim)、導向(Guide)、密封件、固定件,等等。閥內件主要功能是使流通截面積按一定規則比例變化,實現流通能力和閥芯/閥桿行程之間的相互關系,其次是保證緊密關閉,符合標準規定的泄漏率。
ZZY型自力式壓力調節閥流量CV計算選型分析閥芯(Plug)
閥芯是閥內件中最為關鍵的部件,同時是控制閥的可動部件,閥芯與閥座配合使用,可緊密關閉切斷流體,可通過改變節流截面積來調節流體通過量,進而達到過程控制的目的。
閥芯的形狀(或籠式閥的套筒開口形狀)決定著控制閥的流量特性,如常見的線性、等百分比、快開特性和拋物線特性等。閥芯閥座的尺寸以及閥內流路決定著控制閥的最大流通能力。
閥芯閥座的選材及其工藝處理決定著控制閥的工況應用和可靠性。閥芯閥座以及閥內件的設計直接反映了控制閥廠家的技術能力。
ZZY型自力式壓力調節閥流量CV計算選型分析套筒型閥芯開口形狀和流量特性
為了獲得不同的閥門特性,閥芯結構設計有多種多樣,一般分直行程和角行程兩大類。單座型控制閥(Globe valve)一般都是頂部導向的直行程控制閥,采用最多的是柱塞型閥芯、套筒型閥芯,以及用于小流量的針形或圓柱銑槽閥芯,還有抗空化氣蝕的多級閥芯和特殊設計閥芯。角行程閥芯是通過旋轉運動來改變它與閥座間的流通面積。
早期的控制閥主要是單座閥,柱塞型閥芯。為了克服單座控制閥柱塞型閥芯不平衡力大、較低的流通能力和高噪聲等問題,上世紀六十年代國外一些廠家開始研發不平衡力小、有較大流通能力、低噪聲和便于拆裝閥內件的套筒型控制閥。
與柱塞型閥芯相比,套筒型閥芯的緊密關閉切斷功能和泄漏等級要差一些。在工業應用中,套筒易磨損,更會關閉不嚴和使泄漏量增大,造成功能安全不足。此外,套筒閥內件結構和流路也比柱塞型閥復雜,部件數量多,檢維修內容多。密封件多也是套筒閥的一大特點,如Fisher 的ED 系列套筒閥的平衡閥芯就有5 個專用墊片,而抗擠壓密封件或彈簧加載密封環都屬易損件和檢修更換件,更換頻次高及專用墊片備件價格很高也使得維護成本增加。套筒閥的快捷拆卸設計則是應對套筒閥內件耐用性和經常檢修的問題。
鉆孔式籠罩式閥芯專為高壓降的應用場合而設計,并消除氣蝕、噪音、腐蝕和震動這些常見問題。通過鉆孔的分布來實現流量特性。最小可控Cv由閥塞與閥籠之間的間隙以及密封面到閥籠最底側孔的距離決定。
ZZY型自力式壓力調節閥流量CV計算選型分析非平衡式閥芯和平衡式閥芯
針對單座閥閥芯所受不平衡力大的問題,也有采用平衡型閥芯的解決方案,可使得現有推力有限的執行器可用。平衡型閥芯是在閥芯開有平衡孔,將流體壓力引到閥芯另一側平衡腔室并與閥出口流路密封隔離,這樣閥芯兩側壓力差的絕大部分被平衡掉,不平衡力只有相當于流體壓力在閥桿截面積上的作用力了。由于平衡孔徑相對小一些,若被堵上則平衡作用全失,平衡閥芯不適宜用于較臟、含較大固體顆粒物或易結晶易固化介質。常見的平衡閥芯都是將平衡腔室的筒體設計為固定的,密封環嵌裝在平衡閥芯上,平衡閥芯類似活塞作上下提升運動。如下圖所示,左側為非平衡式閥芯,右側為平衡式閥芯。
ZZY型自力式壓力調節閥流量CV計算選型分析抗空化氣蝕閥芯
在調節閥中產生的沖刷、汽蝕空化現象,其根本原因即是由于閥前后的壓差過高,流速過快。一般認為當Δp>2.5MPa時,流體介質在閥內部進入節流部位時壓力驟然下降,在通流截面面積最小處壓力降至,當這一壓力低于當前溫度下流體的飽和蒸汽壓時,部分液體會出現汽化,形成大量微小的汽泡,當流體流過節流口壓力回升時,這些汽泡又發生破裂回到液態,對閥體和閥芯等部件產生沖擊并帶來噪聲、振動、閥內件或閥體材質的破壞等危害。
ZZY型自力式壓力調節閥流量CV計算選型分析主要技術參數和性能指標
公稱通徑DN(mm) | 20 | 25 | 32 | 40 | 50 | 65 | 80 | 100 | 125 | 150 | 200 | 250 | 300 | ||||||||||
額定流量系數Kv | 7 | 11 | 20 | 30 | 48 | 75 | 120 | 190 | 300 | 480 | 760 | 1100 | 1750 | ||||||||||
額定行程(mm) | 8 | 10 | 14 | 20 | 25 | 40 | 50 | 60 | 70 | ||||||||||||||
公稱壓力PN(MPa) | 1.6、4.0、6.4 | ||||||||||||||||||||||
壓力調節范圍(KPa) | 15~50 40~80 60~100 80~140 120~180 160~220 200~260 240~300 280~350 330~400 380~450 430~500 480~560 540~620 600~700 680~800 780~900 880~1000 950~1500 1000~2500 | ||||||||||||||||||||||
流量特性 | 快開 | ||||||||||||||||||||||
調節精度(%) | ±5 | ||||||||||||||||||||||
使用溫度(℃) | ≤350 | ||||||||||||||||||||||
允許 泄漏量 | 硬密封(l/h) | 單座:≤10-4閥額定容量(Ⅳ級);雙座、套筒≤5×10-3閥額定容量(Ⅱ級) | |||||||||||||||||||||
軟密封(ml/h) | 0.15 | 0.30 | 0.45 | 0.60 | 0.90 | 1.7 | 4.0 | 6.75 | 11.10 | 16.0 | |||||||||||||
減壓比 | 10 | ||||||||||||||||||||||
1.25 |
類別 | 型號 | 類別 | 型號 |
單座壓閉型 | ZZYP-16~64B | 單座壓閉型 | ZZYP-16~64K |
雙座壓閉型 | ZZYN-16~64B | 雙座壓閉型 | ZZYN-16~64K |
套筒壓閉型 | ZZYM-16~64B | 套筒壓閉型 | ZZYM-16~64K |
注:1.壓閉型用于閥后壓力調節,當閥后壓力升高,閥門關閉,以達到減壓,穩壓的目的。
2.壓開型用于閥后壓力調節,當閥后壓力升高,閥門打開,以達到泄壓,穩壓的目的。
公稱通徑DN(mm) | 20 | 25 | 32 | 40 | 50 | 65 | 80 | 100 | 125 | 150 | 200 | |||
閥座直徑DN(mm) | 10 | 12 | 15 | 20 | ||||||||||
額定流量系數Kv | 1.8 | 2.4 | 4.4 | 4 | 11 | 20 | 30 | 48 | 75 | 120 | 190 | 300 | 480 | 760 |
允許壓差(MPa) | 2.5 | 2.0 | 1.6 | 1.0 | ||||||||||
公稱壓力(MPa) | 1.6 4.0 6.4 | |||||||||||||
固有流量特性 | 快開 | |||||||||||||
保證調壓閥正常工作 的最小壓差P(MPa) | 0.05 | |||||||||||||
壓力分段范圍 (KPa) | 15~50 40~80 60~100 80~140 120~80 160~220 200~260 240~300 280~350 330~400 380~450 430~500 480~560 540~620 600~700 680~800 780~900 800~1000 900~2000 | |||||||||||||
工作溫度℃ | 液體≤140;氣體≤80;配冷凝器和散熱片≤350 | |||||||||||||
適合介質 | 氣體、蒸汽、低粘度液體 | |||||||||||||
法蘭尺寸、型式 | PN10、16、40GB9113-88、PN64JB/T7-94;PN10,16凸式,PN40,64凹式 或根據用戶要求選配其它標準型式的法蘭(如:ANSI、JIS、DIN等標準) | |||||||||||||
結構長度 | 按GB12221-89標準 | |||||||||||||
可配附件 | 冷凝器(用于介質為蒸汽的場合)、散熱片等。 | |||||||||||||
執行機構信號接口 | 內螺紋M16×1.5 |
四、主要性能指標
控制精度% | ±8 | |||||||||||
允許泄 漏量 | 硬密封(L/H) | 單座(Ⅳ級):≤10-4閥額定容量:雙座、套筒(Ⅱ級)、≤5×10-3×閥額定容量 | ||||||||||
軟密封(ml/min) | DN(mm) | |||||||||||
20 | 25 | 32 | 40 | 50 | 65 | 80 | 100 | 125 | 150 | 200 | ||
0.15 | 0.3 | 0.45 | 0.6 | 0.9 | 1.7 | 4.0 | 6.75 |
公稱通徑(DN) | 20 | 25 | 32 | 40 | 50 | 65 | 80 | 100 | 125 | 150 | 200 | ||
L | PN16、40 | 150 | 160 | 180 | 200 | 230 | 290 | 310 | 350 | 400 | 480 | 600 | |
PN64 | 230 | 230 | 260 | 260 | 300 | 340 | 380 | 430 | 500 | 550 | 650 | ||
B | 233 | 332 | 373 | 522 | 673 | 980 | 1200 | ||||||
H | 壓 力 調 節 范 圍 MPa | 15~140 | 475 | 520 | 540 | 710 | 780 | 840 | 880 | 915 | |||
120~300 | 455 | 500 | 520 | 690 | 760 | 800 | 870 | 880 | |||||
280~500 | 450 | 490 | 510 | 680 | 750 | 790 | 860 | 870 | |||||
480~1000 | 445 | 480 | 670 | 740 | 780 | 850 | 860 | ||||||
600~1500 | 445 | 570 | 600 | 820 | 890 | 950 | 950 | 1000 | |||||
1000~2500 | 445 | 570 | 600 | 820 | 890 | 950 | 950 | 1000 | |||||
A | 壓 力 調 節 范 圍 MPa | 15~140 | φ282 | φ308 | |||||||||
120~300 | φ232 | ||||||||||||
280~1000 | φ196 | φ196 | φ282 | ||||||||||
600~2500 | φ85 | φ96 | |||||||||||
大約重量(Kg) | 26 | 37 | 42 | 72 | 90 | 114 | 130 | 144 | 180 | ||||
導壓管接口螺紋 | M16×15 |
控制閥廠家都致力于抗空化氣蝕的解決方案,除了在選型計算上應用阻塞流方程和避開產生閃蒸和空化的條件,還從閥內件結構、材料選用等方面入手特殊設計出各種不同的抗空化氣蝕閥芯。特殊設計的抗空化氣蝕閥芯使流體在通過閥芯閥座時每一點的壓力都高于該溫度下的飽和蒸汽壓,或采用多級降壓級間壓力恢復的多級閥芯,或采用特殊結構改變流動狀態并提前破壞氣泡而減小閃蒸效果使空化難以產生,同時降低噪聲。
自力式流量調節閥主要由閥體、密封圈、填料、導向桿和驅動機構等組成。閥體是閥門的主體部分,通常采用鑄件或鍛件制造,具有足夠的強度和密封性能。密封圈是閥門的密封部分,它的作用是保證流體的密封性,通常采用橡膠或塑料等材料制成。填料是閥門的填充部分,它的作用是增加閥門的密封性能,通常采用稀疏的填料函制成。導向桿是閥門的導向部分,它的作用是保證閥門在操作時能夠順暢地轉動,通常采用有導向性的材料制成。驅動機構是自力式流量調節閥的驅動部分,通常采用電機或氣動等方式驅動。
2.ZZY型自力式壓力調節閥流量CV計算選型分析調整自力式流量調節閥的性能
自力式流量調節閥的性能可以通過調整密封圈的位置和填料函的壓緊程度來實現。密封圈的位置調整是指調整密封圈與閥體的接觸面積,以達到最佳的密封性能。填料函的壓緊程度調整是指調整填料函對密封圈的壓緊程度,以達到最佳的填充性能。調整密封圈的位置和填料函的壓緊程度需要具備一定的技術和經驗,不當的調整可能導致閥門的泄漏和卡死等問題。
3.ZZY型自力式壓力調節閥流量CV計算選型分析調整自力式流量調節閥的方法
調整自力式流量調節閥的方法可以分為以下幾個步驟:
(1)檢查閥門的外觀和內部情況,確定閥門是否有明顯的泄漏或卡死現象。
(2)根據閥門的結構和原理,確定密封圈的位置和填料函的壓緊程度進行調整。
(3)根據閥門的結構和原理,確定驅動機構的驅動方式進行調整。
(4)根據閥門的結構和原理,進行多次調整,直到閥門的性能達到最佳狀態。
ZZY型自力式壓力調節閥流量CV計算選型分析
自力式流量調節閥如何調整為最佳性能這個問題需要結合具體的閥門結構和原理進行回答,具體的調整方法也會因閥門的不同而有所差異。在實際操作中,需要根據閥門的具體情況進行調整,以達到最佳的性能。國內外一些調節閥廠商都研發了各種不同類型的專門應用于苛刻工況下的抗汽蝕多級降壓調節閥。常見的多級降壓調節閥分為三類,雖然在結構上有所不同,但有著共同的工作原理,都是通過改變結構將總的壓差進行分段多級降壓,使每一級壓降Δp1小于產生空化的臨界壓差,從而有效避免了汽蝕等危害的發生。
請輸入賬號
請輸入密碼
請輸驗證碼
以上信息由企業自行提供,信息內容的真實性、準確性和合法性由相關企業負責,環保在線對此不承擔任何保證責任。
溫馨提示:為規避購買風險,建議您在購買產品前務必確認供應商資質及產品質量。