請輸入產品關鍵字:
基因探針
點擊次數:229 發布時間:2013-7-29
基因探針根據其來源有3種:
一種來自基因組中有關的基因本身,稱為基因組探針(genomic probe);另一種是從相應的基因轉錄獲得了mRNA,再通過逆轉錄得到的探針,稱為cDNA 探針(cDNa probe)。與基因組探針不同的是,cDNA探針不含有內含子序列。此外,還可在體外人工合成堿基數不多的與基因序列互補的DNApian段,稱為寡核苷酸探針。
進行分子突變需要大量的探針拷貝,后者一般是通過分子克隆(molecular cloning)獲得的。克隆是指用無性繁殖方法獲得同一個體、細胞或分子的大量復制品。當制備基因組DNA探針進,應先制備基因組文庫,即把基因組DNA打斷,或用限制性酶作不*水解,得到許多大小不等的隨機片段,將這些片段體外重組到運載體(噬菌體、質粒等)中去,再將后者轉染適當的宿主細胞如大腸肝菌,這時在固體培養基上可以得到許多攜帶有不同DNApian段的克隆噬菌斑,通過原位雜交,從中可篩出含有目的基因片段的克隆,然后通過細胞擴增,制備出大量的探針。
熒光間接標記dna探針檢測
為了制備cDNA 探針,首先需分離純化相應mRNA,這從含有大量mRNA的組織、細胞中比較容易做到,如從造血細胞中制備α或β珠蛋白mRNA。有了mRNA作模板后,在逆轉錄酶的作用下,就可以合成與之互補的DNA(即cDNA),cDNA與待測基因的編碼區有*相同的堿基順序,但內含子已在加工過程中切除。寡核苷酸探針是人工合成的,與已知基因DNA互補的,長度可從十幾到幾十個核苷酸的片段。如僅知蛋白質的氨基酸順序量,也可以按氨基酸的密碼推導出核苷酸序列,并用化學方法合成。
為了確定探針是否與相應的基因組DNA雜交,有必要對探針加以標記,以便在結合部位獲得可識別的信號,通常采用放射性同位素32P標記探針的某種核苷酸α磷酸基。但近年來已發展了一些用非同位素如*、地高辛配體等作為標記物的方法。但都不及同位素敏感。非同位素標記的優點是保存時間較長,而且避免了同位素的污染。zui常用的探針標記法是缺口平移法(nick translation)。首先用適當濃度的DNA酶Ⅰ(DNAseⅠ)在探針DNA雙鏈上造成缺口,然后再借助于DNA聚合酶Ⅰ(DNa poly merasⅠ)的5’→3’的外切酶活性,切去帶有5’磷酸的核苷酸;同時又利用該酶的5’→3’聚酶活性,使32P標記的互補核苷酸補入缺口,DNA聚合酶Ⅰ的這兩種活性的交替作用,使缺口不斷向3’的方向移動,同時DNA鏈上的核苷酸不斷為32P標記的核苷酸所取代。
探針的標記也可以采用隨機引物法,即向變性的探針溶液加入6個核苷酸的隨機DNA小片段,作為引物,當后者與單鏈DNA互補結合后,按堿基互補原則不斷在其3’OH端添加同位素標記的單核苷酸,這樣也可以獲得比放射性很高的DNA探針。
基因探針-DNA探針
質粒的酶切分析
DNA探針是zui常用的核酸探針,指長度在幾百堿基對以上的雙鏈DNA或單鏈DNA探針。現已獲得DNA探針數量很多,有細菌、病毒、原蟲、真菌、動物和人類細胞DNA探針。這類探針多為某一基因的全部或部分序列,或某一非編碼序列。這些DNApian段須是特異的,如細菌的毒力因子基因探針和人類Alu探針。這些DNA探針的獲得有賴于分子克隆技術的發展和應用。以細菌為例,目前分子雜交技術用于細菌的分類和菌種鑒定比之G+C百分比值要準確的多,是細菌分類學的一個發展方向。加之分子雜交技術的高敏感性,分子雜交在臨床微生物診斷上具有廣闊的前景。細菌的基因組大小約5×106bp,約含3000個基因。各種細菌之間絕大部分DNA是相同的,要獲得某細菌特異的核酸探針,通常要采取建立細菌基因組DNA文庫的辦法,即將細菌DNA切成小片段后分別克隆得到包含基因組的全信息的克隆庫。然后用多種其它菌種的DNA作探針來篩選,產生雜交信號的克隆被剔除,zui后剩下的不與任何其它細菌雜交的克隆則可能含有該細菌特異性DNApian段。將此重組質粒標記后作探針進一步鑒定,亦可經DNA序列分析鑒定其基因來源和功能。因此要得到一種特異性DNA探針,常常是比較繁瑣的。探針DNA克隆的篩選也可采用血清學方法,所不同的是所建DNA文庫為可表達性,克隆菌落或噬斑經裂解后釋放出表達抗原,然后用來源細菌的多克隆抗血清篩選陽性克隆,所得到多個陽性克隆再經其它細菌的抗血清篩選,zui后只與本細菌抗血清反應的表達克隆即含有此細菌的特異性基因片段,它所編碼的蛋白是該菌種所*的。用這種表達文庫篩選得到的顯然只是特定。
對于的克隆尚有更快捷的途徑。這也是許多重要蛋白質的編碼基因的克隆方法。該方法的*步是分離純化蛋白質,然后測定該蛋白的氨基或羥基末端的部分氨基酸序列,然后根據這一序列合成一套寡核苷酸探針。用此探針在DNA文庫中篩選,陽性克隆即是目標蛋白的編碼基因。值得一提的是真核細胞和原核細胞DNA組織有所不同。真核基因中含有非編碼的內含子序列,而原核則沒有。因此,真核基因組DNA探針用于檢測基因表達時雜交效率要明顯低于cDNA探針。DNA探針(包括cDNA探針)的主要優點有下面三點:①這類探針多克隆在質粒載體中,可以無限繁殖,取之不盡,制備方法簡便。②DNA探針不易降解(相對RNA而言),一般能有效抑制DNA酶活性。③DNA探針的標記方法較成熟,有多種方法可供選擇,如缺口平移,隨機引物法,PCR標記法等,能用于同位素和非同位素標記。
DNA探針可以用來診斷寄生蟲病,現場調查及蟲種鑒定,可用于病毒性肝炎的診斷,遺傳性疾病的診斷,可用于改造變異的基因,可用于檢測飲用水病毒含量。具體方法:用一個特定的DNApian段制成探針,與被測的病毒DNA雜交,從而把病毒檢測出來。與傳統方法相比具有快速、靈敏的特點。傳統的檢測一次,需幾天或幾個星期的時間,度不高,而用DNA探針只需一天。據報道,能從1t水中檢測出10個病毒來,度大大提高。
-RNA探針
RNA探針是一類很有前途的核酸探針,由于RNA是單鏈分子,所以它與靶序列的雜交反應效率*。早期采用的RNA探針是細胞mRNA探針和病毒RNA探針,這些RNA是在細胞基因轉錄或病毒復制過程中得到標記的,標記效率往往不高,且受到多種因素的制約。這類RNA探針主要用于研究目的,而不是用于檢測。例如,在篩選逆轉錄病毒人類免疫缺陷病毒(HIV)的基因組DNA克隆時,因無DNA探針可利用,就利用HIV的全套標記mRNA作為探針,成功地篩選到多株HIV基因組DNA克隆。又如進行中的轉錄分析(nuclearrunontranscrip-tionassay)時,在體外將細胞核分離出來,然后在α-32P-ATP的存在下進行轉錄,所合成mR-NA均摻入同位素而得到標記,此混合mRNA與固定于硝酸纖維素濾膜上的某一特定的基因的DNA進行雜交,便可反映出該基因的轉錄狀態,這是一種反向探針實驗技術。
近幾年體外轉錄技術不斷完善,已相繼建立了單向和雙向體外轉錄系統。該系統主要基于一類新型載體pSP和pGEM,這類載體在多克隆位點兩側分別帶有SP6啟動子和T7啟動子,在SP6RNA聚合酶或T7RNA聚合酶作用下可以進行RNA轉錄,如果在多克隆位點接頭中插入了外源DNApian段,則可以此DNA兩條鏈中的一條為模板轉錄生成RNA。這種體外轉錄反應效率很高,在1h內可合成近10μg的RNA產生,只要在底物中加入適量的放射性或*標記的NTP,則所合成的RNA可得到標記。該方法能有效地控制探針的長度并可提高標記物的利用率。
值得一提的是,通過改變外源基因的插入方向或選用不同的RNA聚合酶,可以控制RNA的轉錄方向,即以哪條DNA鏈以模板轉錄RNA。這種可以得到同義RNA探針(與mRNA同序列)和反義RNA探針(與mRNA互補),反義RNA又稱cRNA,除可用于反義核酸研究外,還可用于檢測mRNA的表達水平。在這種情況下,因為探針和靶序列均為單鏈,所以雜交的效率要比DNA-DNA雜交高幾個數量級。RNA探針除可用于檢測DNA和mRNA外,還有一個重要用途,在研究基因表達時,常常需要觀察該基因的轉錄狀況。在原核表達系統中外源基因不僅進行正向轉錄,有時還存在反向轉錄(即生成反義RNA),這種現象往往是外源基因表達不高的重要原因。另外,在真核系統,某些基因也存在反向轉錄,產生反義RNA,參與自身表達的調控。在這些情況下,要準確測定正向和反向轉錄水平就不能用雙鏈DNA探針,而只能用RNA探針或單鏈DNA探針。
-探針標記
探針是能與特異靶分子反應并帶有供反應后檢測的合適標記物的分子。利用核苷酸堿基順序互補的原理,用特異的即識別特異堿基序列的有標記的一段單鏈DNA(或RNA)分子,與被測定的靶序列互補,以檢測被測靶序列的技術叫核酸探針技術。探針制備就是將目的基因進行標記。特異性探針有三種形式——cDNA、RNA、寡核苷酸。cDNA和寡核苷酸是目前zui常采用的探針。RNA探針用途很廣,也容易獲得,但其不穩定性限制了其商業用途。cDNA探針的獲得是,將特定的基因片段裝載到質粒或噬菌體中,經過擴增、酶切、純化等復雜的步驟,才能得到一定長度的cDNA探針。這一過程比較復雜,有相應條件的實驗室才能做到。寡核苷酸探針是在已知基因序列的情況下,由核酸合成儀來完成,可廉價獲得大量的此類探針。質量也相對來說更為穩定。由于cDNA探針長度通常為數百至數千個堿基,所以有良好的信號放大作用,但其滲透性比較差。寡核苷酸探針一般為十數個至數十個堿基,滲透性強,但信號放大作用則較差,合成的多相寡核苷酸探針,敏感性可以達到cDNA探針水平。
探針的標記方式有放射性標記和非放射性標記。標記物質有放射性元素(如32P等)和非放射性物質(如*、地高辛等)。32P是zui常用的核苷酸標記同位素,被標記的dNTP本身就帶有磷酸基團,便于標記。特點是比活性高,可達9000Ci/mmol;發射的β射線能量高。用它標記的探針自顯影時間短,靈敏度高。32P的半壽期短,雖使用不方便,但為廢棄物的處理減輕了壓力。非放射性標記法有酶標法和化學物標記法。酶標方法與免疫測定ELISA方法相似,只是被標記的核酸代替了被標記的抗體,事實上被標記的抗體也稱為探針,現有許多商品是*、地高辛標記的。血凝素與*有非常高的親和性,當血凝素標記上過氧化物酶或堿性磷酸酶,經雜交反應zui終形成探針-*-血凝素酶復合物(ABC法),酶催化底物顯色,觀察結果。ABC法底物顯色生成不溶物,以便觀測結果。酶標記法復雜、重復性差,成本高,但便于運輸、保存,靈敏度與放射物標記法相當。
探針標記方法有:①缺口平移標記法。利用的是DNA聚合酶I能修復DNA鏈的功能。該法先由DNaseI在DNA雙鏈上隨機切出切口,然后DNA聚合酶I沿缺口水解5´端核苷酸,同時在3´端修復加入被標記核苷酸,切口平行推移。缺口平移法快速、簡便、成本相對較低、比活性相對較高、標記均勻,多用于大分子DNA標記,(>1000bp),但單鏈DNA、RNA不能用該法標記。②隨機引物法。隨機引物是指含有各種可能排列順序的寡聚核苷酸片斷的混合物,因此它可以與任意核苷酸序列雜交,起到聚合酶反應的引物作用。將待標記的DNA探針片斷變性后與隨機引物一起雜交,然后以此雜交的寡聚核苷酸為引物,在大腸桿菌DNA聚合酶I大斷段(KlenowFragment)催化下,合成與探針DNA互補的DNA鏈,當在反應體系中含有a-32P-dNTP時,即形成放射性同位素標記的DNA探針。具有上述優點,可代替缺口平移法。此外大小、單雙DNA均可標記,標記均勻,標記率高,但也不能標記環狀DNA。隨機引物法標記探針一般長400~600bp。③末端標記法(又叫尾標)。利用末端轉移酶可進行“尾標”,尾標適用于寡核苷酸探針標記,寡核苷酸探針多用于核酸“點”突變的檢測,該探針可用核酸合成儀人工合成,克隆出的探針一般較長,特異性好,標記量大,雜交的檢出信號強。
探針合成的注意事項有:①合成探針的長短,一般在20~50個核苷酸之間。合成過長成本高,且易出現聚合酶合成錯誤,雜交時間長,合成太短則特異性下降。②堿基組成G-C應含40%~60%,一種堿基連續重復不超過4個,以免非特異性雜交產生。③探針自身序列內應無互補區域,以免產生“發夾”結構,影響雜交。總之,一個好的探針zui終要在實踐中才能加以確認。
-實驗應用
探針濃度鑒定
將禽流感病毒H9N2亞型毒株核蛋白(NP)基因3′端較為保守的、約350bp的編碼序列通過限制性內切酶Hae¸切割、分離后,用隨機引物法制備Digoxigenin2112dUTP標記探針。測定該探針的濃度為100Lgöml。特異性試驗發現該探針只能與實驗室構建的、含有NP基因的重組載體pGEM2TE2NP和pBacPAK2NP以及A型流感病毒H9N2亞型、H3N2亞型以及H9N3亞型毒株基因組RNA結合出現特異性的顏色反應,而與實驗室常用的載體pGEM2Teasy、pBacPAK2His3、pTARGET和pGEMEX22以及新城疫病毒、傳染性支氣管炎病毒和傳染性喉氣管炎病毒基因組不發生反應。應用該探針檢測含NP基因的重組載體和重組病毒證明該探針是有效的,可用于含禽流感病毒樣品或材料的檢測。
DNA探針原位雜交
1、4—6微米切片,用防脫片膠(多聚賴氨酸)處理過的玻片貼附
2、56—60℃烤片2—16h
3、新鮮二甲苯脫蠟,10minX2(趁熱脫蠟)
4、100%乙醇5minX2次,不用浸水,直接空氣干燥
5、加入50μl蛋白酶K工作液(蛋白酶K用蒸餾水稀釋,濃度為25μg/ml),37℃消化10—15min
6、棄去蛋白酶K工作液,0.1MTBS洗滌3minX3次逐級酒精脫水(85%,95%,100%酒精)1minX3次然后空氣干燥
7、加入20μl探針,加蓋薄膜。(探針用預雜交液稀釋,濃度為5μg/ml)。
8、95℃變性10—12min;立刻置于冰塊上,防止復性。
9、37℃雜交16—20h
10、揭去薄膜,每張切片加入以下雜交后洗滌液:
>用2—3滴2XSSC37℃洗滌3minX2次;
>0.5XSSC37℃洗滌3minX2次;
>0.2XSSC37℃洗滌3minX2次;
11、0.1MPBS/TBS緩沖液洗滌,1minX3次
12、滴加小鼠抗地高辛*標記的抗體工作液,37℃孵育45—60min;
13、0.1MPBS浸洗,5minX3次
14、滴加高敏堿性磷酸酶鏈親和素復合物工作液,37℃孵育45—60min。
15、0.1MPBS浸洗,5minX3次
16、滴加NBT/BCIP顯色6—16h,
17、雙蒸水終止反應(37℃10min—2h),雙蒸水浸洗,5minX2次
18、滴加核固紅,30秒—5min;
19、雙蒸水浸洗,5minX3次
20、脫水、透明、封片