污水處理設備 污泥處理設備 水處理過濾器 軟化水設備/除鹽設備 純凈水設備 消毒設備|加藥設備 供水/儲水/集水/排水/輔助 水處理膜 過濾器濾芯 水處理濾料 水處理劑 水處理填料 其它水處理設備
濟南信標自動化設備有限公司
ASTMF1714髖關節摩擦磨損試驗機HipwearsimulatorfatigueTestingSystemsISO14242SignificanceandUse3
ASTM F1714 髖關節摩擦磨損試驗機 Hip wear simulator fatigue Testing Systems ISO 14242
Significance and Use
3.1 This guide uses a weight-loss method of wear determination for the polymeric components used with hip joint prostheses, using serum or demonstrated equivalent fluid for lubrication, and running under a dynamic load profile representative of the human hip-joint forces during walking (1,2).5 The basis for this weight-loss method for wear measurement was originally developed (3) for pin-on-disk wear studies (see Practice F732) and has been extended to total hip replacements(4,5) femoral-tibial knee prostheses (6), and to femoropatellar knee prostheses (6,7).
3.2 While wear results in a change in the physical dimensions of the specimen, it is distinct from dimensional changes due to creep or plastic deformation, in that wear generally results in the removal of material in the form of polymeric debris particles, causing a loss in weight of the specimen.
3.3 This guide for measuring wear of the polymeric component is suitable for various simulator devices. These techniques can be used with metal, ceramic, carbon, polymeric, and composite counter faces bearing against a polymeric material (for example, polyethylene, polyacetal, and so forth). This weight-loss method, therefore, has universal application for wear studies of total hip replacements that feature polymeric bearings. This weight-loss method has not been validated for high-density material bearing systems, such as metal-metal, carbon-carbon, or ceramic-ceramic. Progressive wear of such rigid bearing combinations generally has been monitored using a linear, variable-displacement transducers or by other profilometric techniques.
1. Scope
1.1 This guide describes a laboratory method using a weight-loss technique for evaluating the wear properties of materials or devices, or both, which are being considered for use as bearing surfaces of human-hip-joint replacement prostheses. The hip prostheses are evaluated in a device intended to simulate the tribological conditions encountered in the human hip joint, for example, use of a fluid such as bovine serum, or equivalent pseudosynovial fluid shown to simulate similar wear mechanisms and debris generation as found in vivo, and test frequencies of 1 Hz or less.
1.2 Since the hip simulator method permits the use of actual implant designs, materials, and physiological load/motion combinations, it can represent a more physiological simulation than basic wear-screening tests, such as pin-on-disk (see Practice F732) or ring-on-disk (see ISO 6474).
1.3 It is the intent of this guide to rank the combination of implant designs and materials with regard to material wear-rates, under simulated physiological conditions. It must be recognized, however, that there are many possible variations in the in vivo conditions, a single laboratory simulation with a fixed set of parameters may not be universally representative.
1.4 The reference materials for the comparative evaluation of candidate materials, new devices, or components, or a combination thereof, shall be the wear rate of extruded or compression-molded, ultra-high molecular weight (UHMW) polyethylene (see Specification F648) bearing against standard counter faces [stainless steel (see Specification F138); cobalt-chromium-molybdenum alloy (see Specification F75); thermomechanically processed cobalt chrome (see Specification F799); alumina ceramic (see Specification F603)], having typical prosthetic quality, surface finish, and geometry similar to those with established clinical history. These reference materials will be tested under the same wear conditions as the candidate materials.
1.5 The values stated in SI units are to be regarded as standard. No other units of measurement are included in this standard.
3.1本指南使用磨損測定一個減重方法用于的聚合物成分,使用血清或證實等效流體的潤滑,運行下的動態負載配置文件代表人體髖關節的力量在行走過程中(1 2).5磨損測量這種減重方法的基礎是最初的開發(3)磁盤上的針磨損研究(見實踐F732),并一直延伸到全髖關節置換(4,5)股脛骨的(6),femoropatellar(6,7)。
3.2當磨損導致試樣的物理尺寸的變化,這是明顯的尺寸變化由于蠕變或塑性變形,穿一般的查詢結果中去除材料的形式的聚合物碎片顆粒,造成損失的試件重量。
3.3本指南是適用于各種仿真器的設備,用于測量聚合物組分的磨損。這些技術可以使用金屬,陶瓷,碳,聚合物,復合計數器面靠緊的聚合材料(例如,聚乙烯,聚縮醛,等等)。這種減肥方法,因此,全髖關節置換,具有聚合物軸承磨損研究具有普遍的應用。此減肥方法并沒有得到證實高密度材料的軸承系統,如金屬 - 金屬,碳 - 碳或陶瓷 - 陶瓷。一般已逐步磨損等剛性軸承組合使用線性可變位移傳感器或其它輪廓儀技術監測。
1。范圍
1.1本指南介紹了使用一個減重技術評估磨損性能的材料或設備,或兩者兼而有之,目前正在考慮使用人體髖關節置換假體的軸承表面的實驗室方法。的評價為了模擬中遇到的人的髖關節的摩擦磨損條件的設備,例如,如牛血清,或相當于pseudosynovial的流體的流體中使用,以模擬在體內發現的相似的磨損機理和碎片產生的,測試頻率為1赫茲或更低。
1.2自髖模擬器方法允許使用實際植入物的設計,材料,和生理負荷/動作組合,它可以代表一個更符合生理模擬比基本篩選磨損測試,如磁盤上的針(見實踐F732)或磁盤上的環(見ISO 6474)。
1.3本指南的目的是模擬生理條件下材料的磨損率方面,植入物的設計和材料的排列組合。然而,必須認識到,有許多可能的變化中的一個單一的實驗室模擬體內條件,可能并不普遍代表性的一組固定的參數。
1.4參考材料的候選材料,新的設備,或部件,或它們的組合進行比較評價,其應是擠壓或壓縮成形,超高分子量(UHMW)聚乙烯(見規格F648)軸承的磨損率對標準計數器的面孔[不銹鋼(見規格F138);鈷鉻鉬合金(見規格F75);鈷鉻合金熱機械處理(見規格F799);氧化鋁陶瓷(見規格F603)],具有典型的假體質量,表面完成后,那些既定的臨床病史幾何相似。這些參考材料將被測試相同的磨損條件下,作為候選材料。
2. Referenced Documents (purchase separately)
ASTM Standards
D883 Terminology Relating to Plastics
G40 Terminology Relating to Wear and Erosion
ISO Standard
ISO6474
二、產品特點:
無需油源的直線電機技術,保證潔凈的測試環境
軸向通道采用Can總線式控制方式
高速直線作動器
*的驅動器軸承系統,確保由于樣品和夾具的偏移或是有側向力情況下,加載鏈仍處于對中狀態
適用于各種材料和元器件的動靜態測試
高動態性能,頻率可達50 Hz
±10000N 動態軸向載荷
光學編碼器用于精確的數字位移控制,及對試樣的變形控制。
單相電源驅動,無需額外液壓油源、冷卻水、氣動空氣
基于業內*控制方式的數字控制器
高剛度、精確對準的雙立柱加載框架與位于橫梁上的驅動器
Dcell *載荷傳感器技術,實現更快測試,減少慣性差
靈活多樣的T型臺底座,適用于裝配各種規則/不規則的夾具和樣品
儀器設計緊湊簡潔 – 機架占地面積不到0.5 m2
三、主要技術參數
試驗力:±1000N;
試驗力示值精度:2%-99%FS范圍內,各點均為小于±1.0%;
試驗力動態示值波動度:0.5%FS;
作動器位移:±50mm;示值精度±0.5%FS;
主要試驗波形:正弦波、方波、三角波、斜波等。
試驗頻率:0.01-10Hz;
四.設備配置:微機伺服動靜態疲勞測試系統主要組成部分:
1.橫梁電動調整裝置,
2.進口伺服作動缸、日本松下驅動裝置;
3.數據采集控制系統:動靜態伺服控制器和中文軟件系統
4.美國進口動態專用力傳感器
您感興趣的產品PRODUCTS YOU ARE INTERESTED IN
環保在線 設計制作,未經允許翻錄必究 .? ? ?
請輸入賬號
請輸入密碼
請輸驗證碼
請輸入你感興趣的產品
請簡單描述您的需求
請選擇省份