13466675923
當前位置:世聯博研(北京)科技有限公司>> 3D細胞組織灌注培養系統
2.特點介紹
(1). 系統配有9個灌流通道,并且每個都相互立
(2). 系統可以雙向灌注
(3). 用戶可自定義流量,方向和時間
(4). 系統不同的型號支架,用戶可根據需求選取,操作靈活
(5). 流速控制范圍廣泛,0.1 - 6.0 ml/min范圍內均可使用,并可j確控制
(6). 應用范圍廣泛,統te別適合骨、心臟組織圓柱形片段的長期培養
(7). 可以設置多組實驗,每次可以單停止一條灌流通路。
(8). 系統配有光學,非侵入性傳感器,可以對pH和培養基中的氧濃度進行實時監控。
(9). 鎖有的材料都具有生物兼容性且均經過wu菌處理。
3.應用范圍
多通道三維細胞組織灌注流培養系統采用可控、雙向、間質灌流,通道多達9個,并且相互立,且系統鎖有材料都具有生物兼容性且均經過wu菌處理,應用范圍廣泛,是普通流體研究的里想系統,另外te別適合骨、心臟組織圓柱形片段的長期培養。
應用案例:Effect of Perfusion Culture System on In Vitro Osteogenesis of Human Mesenchymal Stem Cells seeded on Porous Hydroxyapatite
通過激光共聚焦掃描顯微鏡觀察,灌流培養比靜態培養得到更好的骨骼組織,且沒有改變細胞的活性和擴增能力。
激光共聚焦掃描顯微鏡檢測結果顯示灌流培養比靜態培養的細胞組織中含有更高的骨鈣蛋白的量,產生更均勻、更真實的骨骼組織。
文獻:Saino E, Bloise N, Spinelli L,Effect of Perfusion Culture System on In Vitro Osteogenesis of Human Mesenchymal Stem Cells seeded on Porous Hydroxyapatite.
4.主要參數
培養小室wu菌內部放入支架,支架尺寸:
支架尺寸:8 [mm] x h 2 [mm] 灌流直徑: 6 [mm]
8 [mm] x h 4 [mm] 灌流直徑6 [mm]
10 [mm] x h 2 [mm] 灌流直徑 8[mm]
10 [mm] x h 4 [mm] 灌流直徑 8[mm]
12 [mm] x h 2 [mm] 灌流直徑 10[mm]
12 [mm] x h 4 [mm] 灌流直徑10 [mm]
培養基儲液瓶:
進口(倒鉤接頭)
出口(倒鉤接頭)
采樣/培養基換端口(魯爾鎖定接頭)
0,22 um過濾器端口(魯爾鎖定接頭)
蠕動泵:
流速:0.1 - 6 [ml/min]
管道尺寸:ID 1/32"
多可連接9通道,可有控制器控制
控制器:
配備3種不同的控制器:ACE,基于PC版和基于定時器的版本。
光學傳感器:
配備pH和O 2光學傳感器,通過串聯連接在液流回路。
5.參考文獻
(1). InFlow Modular perfusion bioreactor--
(2). AutoFeed Automatic medium exchanger
(3). Saino E, Bloise N, Spinelli L, Mantero S, Martinetti R, Imbriani M and Visai L. Effect of Perfusion Culture System on In Vitro Osteogenesis of Human Mesenchymal Stem Cells seeded on Porous Hydroxyapatite. TERMIS EU meeting Granada 2011.
(4). M. Scavone, N. Bloise, E. Saino, L. Spinelli, L. Fassina, S. Mantero, R. Martinetti, L. Visai. Three-Dimensional Perfusion culture of osteosarcoma cell line (SAOS-2) by bidirectional flow. SIB 2010 Camogli
二、美國Quasi Vivo細胞流體培養系統
英國Kirkstall公司生產的創新性細胞培養產品,其Quasi Vivo灌流培養系統可為細胞培養提供持久恒定的流動培養環境,zui大限度模擬體內環境。相比各類傳統靜態培養系統,Quasi Vivo流動培養系統更大限度模擬了細胞在體內生長環境,其流動培養方式更利于培養基內營養物質的擴散和細胞代謝產物的運輸,更有利于復雜細胞模型的構建,尤其適合需要在氣液界面進行分化的各類呼吸道上皮細胞的生長。
Quasi Vivoquan球應用
quan球使用Kirkstall公司Quasi Vivo灌流培養系統的學術及研究機構已達70+個,遍布美國、英國、法國、瑞典、奧地利、意大利、荷蘭、瑞士、日本等。目前Quasi Vivo灌流培養系統已成功用于以下器官模型的培養:
1. 呼吸系統(培養熱點)
2. 肝臟
3. 腎臟
4. 心血管
5. 成纖維細胞
6. 糖尿病模型
7. 血腦屏障
8. 腦組織類器官
典型應用例子:
灌流培養
呼吸道上皮細胞的氣液界面培養是研究經空氣傳播的病原體,如SARS等的常用的模型。傳統的培養方式是用TransWell在普通培養箱中靜置培養。但是此種培養方式wu法模擬培養過程中營養物質和代謝廢物在組織內的運輸,培養得到的模型通常有各種各樣的缺陷,并且所需實驗周期較長。
呼吸道上皮細胞的常規transwell靜止培養方式
Quais Vivo(QV600)灌流培養系統(腔室+儲液瓶+底座+管道+泵等)
而Quasi Vivo灌流培養系統可為細胞培養提供持久恒定的流動培養環境,zui大限度模擬體內環境。研究發現,使用Quasi Vivo系統進行灌流培養與靜態培養相比,氣液界面培養的呼吸道上皮細胞(正常人氣管上皮細胞 Normal Human Bronchial Epithelial Cells,簡稱NHBE;小氣道上皮細胞 Small Airway Epithelial Cells,簡稱SAE),發育分化速度更快,表現為纖毛分化度更高,纖毛運動更強、粘液產生和屏障功能更強。在灌注下加速分化后,將上皮細胞轉移到靜態條件下,并添加抗原呈遞細胞(APC)以研究其在病原體感染后的功能。(Chandorkar P, et al., Fast-track development of an in vitro 3D lung/immune cell model to study Aspergillus infections. Sci Rep. 2017 7(1):11644. doi: 10.1038/s41598-017-11271-4.)
01、人體內鎖有的細胞都需要營養物質和代謝廢物的流動
02、肺部氣管/支氣管和小氣道上皮結構精細,進行體外培養模擬體內環境,對呼吸道病原體的研究至關重要
03、采用quan新的灌流培養方式培養呼吸道上皮細胞(采用QV600)
相比使用transwell靜止培養(Static Conditions),Quasi Vivo灌流培養系統(Perfused Conditions)中,呼吸道上皮細胞的生長和分化呈現更好狀態
04、電鏡照片顯示,采用灌流培養方式(Perfused conditions)的呼吸道上皮細胞,分化程度更高
05、使用MUC5B染色可以發現,采用灌流培養方式(Perfused conditions)的呼吸道上皮細胞,在培養的弟7天即可分泌大量粘液。用OCCLUDIN染色可以發現,細胞間的緊密連接發育更完善
06、使用WGA染色發現,采用灌流培養方式(Perfused conditions)的呼吸道上皮細胞,纖毛分化度更高
07、測量TEER(經細胞電阻),采用灌流培養方式(Perfused conditions)的呼吸道上皮細胞TEER值更大,代表得到的上皮細胞膜狀結構更完整
一、不同細胞,Quasi Vivo型號怎么選?
:使管路上游的細胞培養基成為下游細胞的條件培養基。
流動培養形成含血管的3D心臟組織 | 再生醫學
在再生醫學領域,怎樣培養出含血管的組織,是未來應用能否成功的關鍵之一。早期的臨床試驗采用生長因子或細胞注射的方法來修補損傷的心臟,但由于注射細胞造成的炎癥反應和局部缺血會在體內造成低氧環境,使得注射的細胞定植率低而死亡率高,不能有效地修復損傷的心臟功能。
Quasi Vivo QV500流動培養系統為接種在明膠支架上的人間充質干細胞(hMSCs)和人心肌祖細胞(hCMPC)提供充足的氧氣,促進細胞和營養物質向支架核心內擴散,并能快速有效地排除組織內的代謝廢物,促進血管生成,從而形成由血管樣和心臟樣細胞組成的組織結構密集的適于體內移植的原組織。(Pagliari S, et al. A multistep procedure to prepare pre-vascularized cardiac tissue constructs using adult stem cells, dynamic cell cultures, and porous scaffolds. Frontiers in Physiology. 2014; 5: 210)
Quasi-Vivo流動培養系統 (QV500型)的蠕動泵將培養基從儲液瓶泵到兩個串聯的培養腔室內,并能保持恒定流速(200μl/min),保證多孔明膠支架內層的培養基流動。
構建含血管的3D心臟的實驗方案示意圖。明膠多孔支架被浸入稀釋的Matrigel中,然后轉移至內皮分化培養基中。之后將人間充質干細胞接種在支架上,使人間充質干細胞定植在支架培養上并向內皮進行分化,96小時后,將在聚苯乙烯細胞培養板用心臟分化培養基預先定型2周的心臟-GFP人心肌祖細胞接種于血管化的支架上,用QV500流動培養系統在心臟分化培養基中培養7天。
采用上述實驗方案,對用QV500培養一周后的共培養結構進行檢測,發現在支架上有大量細胞定殖。
QV500流動培養條件下支架內部浸潤了大量的血管樣細胞(紅色)和人心肌前體細胞(hCMPC)衍生的心肌細胞(綠色),而靜態培養條件下,細胞大部分分布在支架表面。
免疫組化結果顯示通過QV500動態培養可以促進心肌樣細胞(GFP,綠色)和內皮樣細胞(VCAM-1陽性細胞,紅色)向支架內部浸潤。
(A) 切片顯示QV500流動培養的內皮樣細胞(VCAM-1陽性細胞,紅色)排列成孔狀,形成管狀結構,并與心肌樣細胞(GFP,綠色)接觸。(B)QV500流動培養條件下,支架內廣泛的細胞分布導致形成密集組裝的多細胞組織,該組織衍生自所用的人間充質干細胞(hMSCs)和人心肌前體細胞(hCMPC)。
總結:在本文中使用的QV500流動培養系統,能增強氧氣與營養物質的運輸,進而增強工程化心血管組織的活性和功能。
與眾不同的Quasi Vivo流動培養系統,讓日、美、英、法、瑞士、瑞典等quan球70多個研究機構獲得了更強大的細胞培養工具,在包括呼吸系統、心血管系統、肝臟、腎臟、腸道、腦組織類器官,以及糖尿病的研究上更進一步。
流動培養實現血腦屏障三種細胞共培養 | 阿爾茨海默病新模型
血腦屏障(blood-brain barrier, BBB)在中樞神經系統(CNS)的生理和病理中都起著重要的作用。血腦屏障功能異常會引起包括阿爾茨海默癥(AD)等許多神經退行性疾病。組成血腦屏障的毛細血管內皮細胞(capillary endothelial cells)、周細胞(pericytes)以及星形膠質細胞(astrocytes)間的復雜的相互作用使得很難在體內確定這三種細胞對神經毒性各自的貢獻。
而Quasi Vivo流動培養系統可為體外培養這三種細胞提供在不形成屏障的情況下維持細胞間通訊的培養環境。Quasi Vivo流動培養系統為未來研究不同類型的血腦屏障細胞在中樞神經系統疾病和細胞毒性試驗中的te殊作用提供一個有價值的工具。(Miranda-Azpiazu P, et al. A novel dynamic multicellular co-culture system for studying individual blood-brain barrier cell types in brain diseases and cytotoxicity testing. Sci Rep. 2018; 8(1): 1-10.)
圖 1. 單du培養的人星形膠質細胞(A,GFAP陽性)、周細胞(B,α-actin陽性)、血管內皮細胞(C,CD31陽性)以及血管內皮細胞形成的緊密連接(D,ZO1陽性)。
圖 2 用Quasi-Vivo QV500培養共享相同的培養基的星形膠質細胞、周細胞和血管內皮細胞的示意圖(A),R為儲液瓶,P為蠕動泵。連接培養基存儲瓶的一個Quasi-Vivo QV500流動培養系統的細胞培養腔室(B)。
圖 3 Quasi-Vivo QV500流動培養系統建立的能同時培養三種不同細胞的多細胞共培養體系。
圖4 幾種流動培養方式示意圖:A圖為單du星形角質細胞流動培養,B圖為單du周細胞流動培養,C圖為單du血管內皮細胞流動培養,D圖為三種細胞組合后一起流動培養。
圖5 用MTT法測細胞活力,與靜態培養相比,采用Quasi-Vivo QV500流動培養系統對單du培養血管內皮細胞(HBECs)、周細胞(HBVPs)、星形角質細胞(HAs)(A)或三種細胞共培養(B)的血管內皮細胞的細胞活力有明顯升高。
圖6 用MTT法測細胞活力,與靜態培養(Static)相比,流動培養(Dynamic)的周細胞(HBVPs)會更早受到Aβ25-35(淀粉樣蛋白β肽的Aβ25-35片段,用于阿爾茨海默病的造模)的毒害。
總結:本文中研究者利用Quasi-Vivo QV500流動培養系統建立了三種細胞的共培養。這些細胞不接觸,通過共享培養基實現細胞間的通信,不形成屏障能更好的研究這些細胞類型單du對不同化合物的響應情況。并且研究者還發現共享相同培養基的星形膠質細胞、周細胞和血管內皮細胞的zui適流速為50 μl/min。
作為創新的細胞培養方法,Quasi Vivo流動培養已經quan球70余家專業機構使用驗證,獲得了令人側目的培養效果,在美、英、法、日等多國開展了頗具新意的細胞研究,涉及呼吸系統、肝臟、腎臟、心血管、成纖維細胞、糖尿病模型、腦組織類器官等。
三、瑞士Ucup3D細胞組織灌注培養生物反應器系統
簡單介紹
UCUP灌注生物反應器是一種用戶友好的工具,用于建立和控制您的3D細胞和組織培養。 Ucup專門設計用于在生命科學相關領域工作的任何科學家或實驗室技術人員使用,而不必要求使用生物反應器的任何先前經驗。 應用 器官型模型(骨重建,腫瘤微環境) 3D細胞擴增和分化 細胞 - 支架相互作用的研究 細胞外基質相互作用的研究 生成適合臨床前實驗的3D細胞支架結構
產品描述
Ucup三維灌流培養系統
生成適合臨床前實驗的3D細胞支架結構 瑞士,Ucup三維灌流培養系統 Organotypic models (Bone remodeling, Tumor microenvironment) 3D cell expansion and differentiation Investigation of cell-scaffold interactions Investigation of cell-extracellular matrix interactions Generation of 3D cell-scaffold constructs suitable for preclinical experimentation Apply instantly your current cell culture concepts and simply let Ucup further extend them by performing the seamless transition to the 3D context. Product Configuration 1x syringe pump 1x rack 1x Starter kit If you are convinced of the benefits that a 3D culture environment can provide,the Ucup bioreactor is the essential tool to conduct with your experiments. For assistance and advice to set up your experiment, do not hesitate to contact CELLEC’s expert team to address your questions. 應用文獻: Boccardo and Gaudiello 2016 In this paper, the perfusion-based bioreactor is used for the generation of an adipose mesenchymal stromal cells -based engineered constructs (Title: Engineered mesenchymal cell-based patches as controlled VEGF delivery systems to induce extrinsic angiogenesis, Acta Biomaterials) Cerino 2016 presents an application for engineering an in vitro 3D multi-cellular muscle-like tissue model (Title: Three-dimensional multi-cellular muscle-like tissue engineering in perfusion-based bioreactors, Biotechnology and Bioengineering) Hirt and Papadimitropoulos 2015 demonstrates the importance of perfusion flow in 3D cultures of tumor cells to efficiently mimic functional features observed “in vivo" and to test anticancer compounds (Title: Bioreactor-engineered cancer tissue-like structures mimic phenotypes, gene expression profiles and drug resistance patterns observed in vivo,Biomaterials) Centola 2015 In this study, the perfusion-based bioreactor system is used to improve cartilage digestion, resulting in higher and more reproducible yield of cell populations with high proliferation and chondrogenic capacity (Title: An improved cartilage digestion method for research and clinical applications, Tissue Engineering Part C, Methods) Bao 2015 presents a humanized in vitro model that reduces the need for experimental animal models, while recapitulating key biological events in a periodontal pocket (Title: Establishment of an oral infection model resembling the periodontal pocket in a perfusion bioreactor system, Virulence) Papadimitropoulos 2014 presents an efficient expansion method of mesenchymal stromal cells by direct seeding and culturing fresh bone marrow preparation within the pores of 3D porous scaffold (Title: Expansion of human mesenchymal stromal cells from fresh bone marrow in a 3D scaffold-based system under direct perfusion, PLoS One) Hirt 2014 highlights the potential of perfusion-based models to create 3D tumour microenvironment for cancer immunobiology studies and pre-clinical assessment of innovative treatments (Title: In vitro 3D models of tumor-immune system interaction, Advance Drug Delivery Review) Papadimitropoulos 2013 presents an application/method for seeding open porous rapid prototyped polymeric scaffolds (Title: A collagen network phase improves cell seeding of open-pore structure scaffolds under perfusion, Journal of Tissue Engineering and Regenerative Medicine) Sadr 2012 presents an application/method to generate a decellularized cell-laid extacellular matrix which enhances the biological performance of polymeric materials (Title: Enhancing the biological performance of synthetic polymeric materials by decoration with engineered, decellularized extracellular matrix, Biomaterials) Gueven 2011 presents an application for upscaling osteogenic and vasculogenic grafts (Title: Engineering of large osteogenic grafts with rapid engraftment capacity using mesenchymal and endothelial progenitors from human adipose tissue, Biomaterials) Papadimitropoulos 2011 presents an application for engineering an in vitro bone organ model (Title: A 3D in vitro bone organ model using human progenitor cells, European Cell & Materials) Di Maggio 2011 a review for our approaches to engineering in 3D vitro niches (Title: Toward modeling the bone marrow niche using scaffold-based 3D culture systems, Biomaterials) Santoro 2010 presents an application for upscaling cartilaginous grafts (Title: Bioreactor based engineering of large-scale human cartilage grafts for joint resurfacing, Biomaterials) Scherberich 2007 presents an application for generating osteogenic and vasculogenic grafts (Title: Three-dimensional perfusion culture of human adipose tissue-derived endothelial and osteoblastic progenitors generates osteogenic constructs with intrinsic vascularization capacity, Stem Cells) Wendt 2006 describes the system for maintaining living uniform tissues in the scaffolds (Title: Uniform tissues engineered by seeding and culturing cells in 3D scaffolds under perfusion at defined oxygen tensions, Biorheology) Braccini 2005 presents an application for generating osteogenic grafts (Title: Three-dimensional perfusion culture of human bone marrow cells and generation of osteoinductive grafts, Stem Cells) Wendt 2003 describes the principle of the Ucup and its impact on cell seeding (Title: Oscillating perfusion of cell suspensions through three-dimensional scaffolds enhances cell seeding efficiency and uniformity, Biotechnology and Bioengineering)應用:
Features Advantages Benefits Direct perfusion Unifrom cell seeding Uniform tissue Efficient nutrition and waste removal Viable tissue, up to several weeks of culture Physiological conditions (mimicking inetrstitial fluid flow and associated induced shears Physiologically relevant tissue Simple and smart design (patented) Easy and ready to use No previous experience with 3D cell cultures required Minimized manual operations Highly reproducible results Efficient with many cell types Versatile cell and tissue culture models Supple scaffold adaptors Compatible with a wide spectrum of 3D porous scaffolds of various composition, architecture and sizes Access to cell culture medium through valves Suitable to seed and co-culture several cell types, even at different culture time points Possibility to investigate complex cell-cell and cell-extracellular matrix interaction Efficient cell retrieval from scaffolds after culture (with standard enzymatic treatment) Easy cell analyses (cytofluorimetry, gene expression etc.)
The performance of Ucup has been extensively validated and certified by scientific publications in peer-review journals.10x Ucup disposable bioreactor kits + + = The driving force of the system. It generates the oscillating fluid flow of the cell/medium suspension. It cannot be purchased separately. A rotating rack for easy and correct positioning of Ucup disposable bioreactors. It can also be purchased separately. The central core of the system. It is disposable and it comes with 10x adaptors to fit the specific size of your scaffolds. Scaffolds can also be purchased separately. It provides all what you need to start your 3D cell cultures. Additional accessories (e.g. forceps, syringes) and testing units are also included.
請輸入賬號
請輸入密碼
請輸驗證碼
以上信息由企業自行提供,信息內容的真實性、準確性和合法性由相關企業負責,環保在線對此不承擔任何保證責任。
溫馨提示:為規避購買風險,建議您在購買產品前務必確認供應商資質及產品質量。