污水處理設備 污泥處理設備 水處理過濾器 軟化水設備/除鹽設備 純凈水設備 消毒設備|加藥設備 供水/儲水/集水/排水/輔助 水處理膜 過濾器濾芯 水處理濾料 水處理劑 水處理填料 其它水處理設備
禹創環境科技(濟南)有限公司
曝氣阻力 | 0mmH2O |
---|
微納米氣泡的應用
1.水產養殖2.無土栽培3.果蔬清洗4.洗浴保健5.生態修復6.污水處理7.船舶減阻8廢氣處理
一、微納米氣泡的定義
通常我們把氣體在液體中的存在現象稱作氣泡。氣泡的形成現象,在自然界中的許多過程中都能遇到,當氣體在液體中受到剪切力的作用時就會形成大小、形狀各不相同的氣泡。目前,對氣泡的分類與定義并不是十分嚴格,按照從大到小的順序可分為厘米氣泡(CMB)、毫米氣泡(MMB)、微米氣泡(MB)、微納米氣泡(MNB)、納米氣泡(NB)。所謂的微納米氣泡,是指氣泡發生時直徑在10微米左右到數百納米之間的氣泡,這種氣泡是介于微米氣泡和納米氣泡之間,具有常規氣泡所不具備的物理與化學特性。
二、微納米氣泡的特性
1.比表面積大
氣泡的體積和表面積的關系可以通過公式表示。氣泡的體積公式為V=4π/3r3,氣泡的表面積公式為A=4πr2,兩公式合并可得A=3V/r,即V總=n·A=3V總/r。也就是說,在總體積不變(V不變)的情況下,氣泡總的表面積與單個氣泡的直徑成反比。根據公式,10微米的氣泡與1毫米的氣泡相比較,在一定體積下前者的比表面積理論上是后者的100倍??諝夂退慕佑|面積就增加了100倍,各種反應速度也增加了100倍。
2.上升速度慢
根據斯托克斯定律,氣泡在水中的上升速度與氣泡直徑的平方成正比。氣泡直徑越小則氣泡的上升速度越慢。從氣泡上升速度與氣泡直徑的關系圖可知,氣泡直徑1mm的氣泡在水中上升的速度為6m/min,而直徑10μm的氣泡在水中的上升速度為3mm/min,后者是前者的1/2000。如果考慮到比表面積的增加,微納米氣泡的溶解能力比一般空氣增加20萬倍。
3.自身增壓溶解
水中的氣泡四周存有氣液界面,而氣液界面的存在使得氣泡會受到水的表面張力的作用。對于具有球形界面的氣泡,表面張力能壓縮氣泡內的氣體,從而使更多的氣泡內的氣體溶解到水中。根據楊-拉普拉斯方程, ?P=2σ/r,?P代表壓力上升的數值,σ代表表面張力,r代表氣泡半徑。直徑在0.1mm以上的氣泡所受壓力很小可以忽略,而直徑10μm的微小氣泡會受到0.3個大氣壓的壓力,而直徑1μm的氣泡會受高達3個大氣壓的壓力。微納米氣泡在水中的溶解是一個氣泡逐漸縮小的過程,壓力的上升會增加氣體的溶解速度,伴隨著比表面積的增加,氣泡縮小的速度會變的越來越快,從而終溶解到水中,理論上氣泡即將消失時的所受壓力為無限大。
4.表面帶電
純水溶液是由水分子以及少量電離生成的H+和OH-組成,氣泡在水中形成的氣液界面具有容易接受H+和OH-的特點,而且通常陽離子比陰離子更容易離開氣液界面,而使界面常帶有負電荷。已經帶上電荷的表面一般傾向于吸附介質中的反離子,特別是高價的反離子,從而形成穩定的雙電層。微氣泡的表面電荷產生的電勢差常利用ζ電位來表征,ζ電位是決定氣泡界面吸附性能的重要因素。當微納米氣泡在水中收縮時,電荷離子在非常狹小的氣泡界面上得到了快速濃縮富集,表現為ζ電位的顯著增加,到氣泡破裂前在界面處可形成非常高的ζ電位值。
5.產生大量自由基
微氣泡破裂瞬間,由于氣液界面消失的劇烈變化,界面上集聚的高濃度離子將積蓄的化學能一下子釋放出來,此時可激發產生大量的羥基自由基。羥基自由基具有超高的氧化還原電位,其產生的*氧化作用可降解水中正常條件下難以氧化分解的污染物如*等,實現對水質的凈化作用。
6.傳質效率高
氣液傳質是許多化學和生化工藝的限速步驟。研究表明,氣液傳質速率和效率與氣泡直徑成反比,微氣泡直徑極小, 在傳質過程中比傳統氣泡具有明顯優勢。當氣泡直徑較小時,微氣泡界面處的表面張力對氣泡特性的影響表現得較為顯著。這時表面張力對內部氣體產生了壓縮作用,使得微氣泡在上升過程中不斷收縮并表現出自身增壓效應。從理論上看,隨著氣泡直徑的無限縮小,氣泡界面的比表面積也隨之無限增大,終由于自身增壓效應可導致內部氣壓增大到無限大。因此,微氣泡在其體積收縮過程中,由于比表面積及內部氣壓地不斷增大,使得更多的氣體穿過氣泡界面溶解到水中,且隨著氣泡直徑的減小表面張力的作用效果也越來越明顯,終內部壓力達到一定極限值而導致氣泡界面破裂消失。因此,微氣泡在收縮過程中的這種自身增壓特性,可使氣液界面處傳質效率得到持續增強,并且這種特性使得微氣泡即使在水體中氣體含量達到過飽和條件時,仍可繼續進行氣體的傳質過程并保持高效的傳質效率。
7.氣體溶解率高
微納米氣泡具有上升速度慢、自身增壓溶解的特點,使得微納米氣泡在緩慢的上升過程中逐步縮小成納米級,后消減湮滅溶入水中,從而能夠大大提高氣體(空氣、氧氣、臭氧、二氧化碳等)在水中的溶解度。對于普通氣泡,氣體的溶解度往往受環境壓力的影響和限制存在飽和溶解度。在標準環境下,氣體的溶解度很難達到飽和溶解度以上。而微納米氣泡由于其內部的壓力高于環境壓力,使得以大氣壓為假定條件計算的氣體過飽和溶解條件得以打破。
您感興趣的產品PRODUCTS YOU ARE INTERESTED IN
環保在線 設計制作,未經允許翻錄必究 .? ? ?
請輸入賬號
請輸入密碼
請輸驗證碼
請輸入你感興趣的產品
請簡單描述您的需求
請選擇省份