在許多發展中國家和發達國家,地表水和地下水受到硝酸鹽或亞硝酸鹽污染的現象日益增多。離子交換、吸附、化學處理、膜技術和生物處理技術等是處理含硝酸鹽廢水的成熟方法。離子交換和吸附工藝主要用于高純水的處理,并且NO3-→NO2-→NO→N2O→N2,C、S、H 等都可以作為反硝化過程的電子供體。目前針對不同的電子供體,科學家們研究了相應的異養和自養生物反硝化工藝,筆者對這些工藝進行了較詳細的論述,硝酸鹽的處理提供技術方案選擇。
1 異養反硝化
異養反硝化是由反硝化細菌利用有機碳源作為能源和電子供體,把硝酸鹽反硝化為氮氣的過程。已知的異養反硝化細菌有Pseudomonas、Paracocus、 Flavobacterium、Alcaligenes、Bacillus spp.等〔1〕。C/N、進水硝酸鹽濃度、微生物濃度、SRT、HRT 和反應器結構是影響硝酸鹽去除速率的主要因素。
消化液回流技術介紹和屠宰污水處理設備說明
對于含有豐富碳源的生活污水和養殖廢水,C/N 不是反硝化的主要影響因子。但某些工業廢水,如冶金、電鍍、半導體、制造和能源廢水,其有機物濃度很低甚至沒有,卻含有高濃度的NO3--N。為獲得較高的脫氮水平,往往需要給這些廢水外加碳源。通常,反硝化過程中選擇何種外加碳源與經濟有關,甲醇、乙酸和乙醇的反硝化速率相近,因甲醇*而應用zui廣泛。但由于甲醇毒性較大,近年多采用乙酸作為外加碳源。它們通常與磷酸鹽一起投加,以保證出水NO2--N 在較低的水平。然而,未利用完的外加碳源可能引起二次污染,因此其工藝出水需要混凝、吸附等后續處理。另外利用這些傳統碳源進行反硝化時,污泥產率較高(見表 1),一方面加大了污泥處置的費用,另一方面因其出水中的微生物濃度超標風險較大,需要進行嚴格的消毒。
科學家們也曾研究利用更經濟的非溶解性碳源進行反硝化的可能性,即利用非溶解性碳源作為微生物的食物及附著的填料,緩釋的碳源使反硝化得以進行而不會導致出水中有機物超標。棉花〔7, 8, 9〕、麥稈〔10〕、報紙〔11〕、鋸末〔12〕、淀粉〔13〕、菜油〔14〕等都被用于生物反硝化,其中棉花作為碳源時的反硝化速率較高,可達353 g/(m3·d),但仍低于甲醇等傳統碳源的反硝化速率(見表 2)。消化液回流技術介紹和屠宰污水處理設備說明
因此仍需進一步提高固態碳源的溶解速率和反硝化的穩定性,使利用非溶解性碳源的異養反硝化得以應用于工業廢水的脫硝。