涂建
產品介紹
1.1、概述
隨著我國電力行業的發展及新技術的應用,智能變電站成為未來變電站的發 展趨勢,并將成為智能電網中的重要組成部分。智能變電站是建立在 IEC61850 協議規范基礎上,由智能化一次設備和網絡化二次設備分層構建,以實現變電站 內電氣設備間信息共享和互操作的現代化變電站。
HDJB-5000 儀器是一款手持式智能變電站光數字綜合測試儀,同時滿足智能變 電站間隔層設備(微機保護、自動裝置)、過程層設備(智能終端、合并單元) 等的報文分析及保護功能測試,完善的功能給您帶來智能變電站高效、測試新體 驗,是日常維護、檢測、調試、監控與分析設備運行狀態的必要工具。
1.2、裝置特點
1. 業內全新、高效、便捷的測試手段
替換復雜選擇輸出 SMV、GOOSE 控制塊的流程,通過選擇目標測試設備,儀 器直接輸出目標測試設備所需要的全部數據報文(IEC61850 SMV GOOSE)
2. 接口豐富規約齊備
產品具備 3 組 ST 光纖接口,3 種 LC 光纖接口,具備*擴展性。測試時IEC61850 9-2、9-1、9-2LE 由同一個光纖通道輸入,自適應數據幀格式;
3. 高精度、實時監控一次值與二次值
本系統采用高精度算法,實時監控、還原一次值與二次值
4. 功能完善,集中智能設備的全面以及兼容性測試、性能
產品功能模塊參考智能變電站測試方案進行設計,高覆蓋智能變電站運維、檢修、調試、監控等多方面使用場景
5. 穩定性好
產品可以長期穩定運行,經過 30*24 小時不間斷運行測試,硬件設計充分考 慮到各種運行條件,同時考慮到各種實驗異常情況并進行信息提示
6. 功能完備 SCD 解析軟件
SCD 解析軟件高速度解析 SCD 文件,并展示智能設備發布、訂閱塊信息,同 時具備 FTP 傳輸、SCD 檢測功能
7. 長時間續航能力
儀器具備穩定長時間續航能力,正常充滿點后,使用時間在 10 小時,滿足 長時間測試需要。
1.3、裝置特征
1.兼容多廠家的 IED 文件,支持 SCD 文件解析和檢測,并分析數據發布、訂閱 信息,簡化測試過程
2.支持 IEC61850-9-1/2、IEC60044-7/8(FT3 和 FT3 擴展) 、GOOSE、IRIG-B、 IEEE1588 等標準規約,可接入智能變電站過程層、間隔層之間任意網絡節點、 設備收發報文
3.數量多的對外接口,3 對 ST 接口(SFP),3 個 LC 接口,1 個電網口,同時 具備 wifi 模塊用以滿足用戶和保護邏輯驗證的多種需求
4.支持 SMV、GOOSE、IRIG-B、IEEE1588 報文監測,可對報文進行異常統計。 具備遙信、遙測量監測功能,遙測量采用表格、序量等方式進行監測
5.具備 GPS 校時信號輸出功能(IRIG-B),以進行設備校時測試
6.支持 IEC60044-7/8(FT3)采樣值報文收發功能,可選 2.5Mbps、5Mbps、10Mbps傳輸波特率
7.支持多種 SMV 報文采樣率設置,支持 GOOSE 心跳報文與變位報文間隔時間設 置
8.支持 IRIG-B 以及 IEEE 1588 對時方式,提供時間同步以及查看時鐘源時間 功能
9.支持測試光數字電壓、電流互感器、變壓器的極性測試
10.大屏幕圖形彩色液晶顯示、直觀友好的界面菜單,模塊化的操作屬性配置, 信息詳細直觀、按鍵操作方便易用
1.4、裝置技術參數
在額定 50Hz 的情況下,采樣值 SV 電壓測量精度優于 0.001%,相位精度優于0.001°;
采樣值 SV 電流精度優于 0.001%,相位精度優于 0.001°
接收 GOOSE 事件分辨率≤100us
畫面響應時間<100ms
遙測響應相應時間<100ms
遙信變位響應時間<100ms
頻率精度≤0.02Hz
實時監控刷新時間≤20ms
智能設備平均*時間(MTBF)≥100000 小時
系統平均*時間(MTBF)≥50000 小時
光口數量:3 對 LC 光口,3 組 ST 光口
光口參數值:LC 光口 1310nm ,ST 光口 850nm
裝置功耗:7.5w
裝置電源:8000Ma.H*3.7V*3
1.5、裝置執行標準
DL/T 860 系列標準《變電站通信網絡和系統》(即 IEC61850 系列標準)
DL/T 624-1997《繼電保護微機型實驗裝置技術條件》
GB/T20840.8-2007《互感器 第八部分:電子式電流互感器》
IEC62195《電力系統控制與相關通信 電力市場的通信》
IEC62210《數據與通信安全》
1.6、裝置工作環境
1、運行溫度:戶內安裝 ,環境溫度-25℃~+70℃;
2、環境濕度:空氣相對濕度不大于 100%(熱帶雨林高濕熱鹽霧氣候,非凝露);
3、高度:海撥高度不大于 4000 米;
4、大氣壓力:86~108kPa;
5、溫差:日氣溫大變化 40℃;
6、抗震能力:水平加速度不大于 0.4g,垂直加速度不大于 0.2g;
1.7、電磁兼容性
本儀器會運行于各種電壓等級變電站中,由于其電磁環境非常惡劣,故設備 要具備較強的可靠性及電磁兼容性,下面是對系統電磁兼容性的要求:
1.IEC255-21-1 《3 級高頻干擾試驗:2.5KV(1MHz/400KHz)》
2.IEC255-21-4 《快速瞬變干擾試驗》
3.IEC61000-4-2 《靜電放電抗干擾度試驗:3 級》
4.IEC61000-4-3 《輻射電磁場抗干擾度試驗:3 級》
5.IEC61000-4-4 《快速瞬變電脈沖群抗干擾度試驗:4 級》
6.IEC61000-4-5 《沖擊(浪涌)抗干擾度試驗》
7.IEC61000-4-6 《電磁場感應的傳導擾抗擾度試驗》
8.IEC61000-4-8 《工頻磁場的抗擾度試驗》
發電機部件造成一定的危害。結合現場測量數據對軸電壓的性質作了分析,列舉出對發電機造成損壞的各種情形。在其檢測手段上,分別對軸絕緣檢測法和軸電流測量法的原理進行了分析,對三峽電站的應用效果作了評估,比較了兩種方法的特點優劣,提出了應用注意事項和優化手段。
軸電壓的性質與軸絕緣系的必要性由于定、轉子之間的氣隙不均勻以及定子鐵芯的局部磁阻較大、磁路不對稱等原因,導致發電機的定子磁場存在不平衡,這會使得水輪發電機的轉子上產生與軸相交的交變磁通和軸向的感應電勢,即軸電壓[1]。對于水輪發電機,由于機組轉速不高,且通過設計制造和安裝單位對機組安裝質量的控制,機組正常運行時該感應電勢對地不會太高,發電機上端軸軸電壓一般不超過10 V,三峽電站機組的軸電壓也大致處于這一水平。為某型水輪發電機的軸電壓現場實錄波形,該型機因定子磁路設計上的問題,軸電壓偏高,峰值甚至達數十伏。電壓諧波特征明顯,但起主要作用的是基波與三次諧波[2]。以三峽某機型為例,通過FFT 分析,(如圖2)當機端壓為額定時,三次諧波占整個電壓比例的一半以上。清華大學與福建省電力系統研究和生產單位合作,也獲取了有價值的軸電壓頻譜數據[3],結論與三峽機型的特征是吻合的。盡管軸電勢有效值不大,但在發電機內部各種交變的脈沖磁場的作用下,其峰值可能很高。對水輪發電機而言,由于轉子大軸電阻很小,且一般軸承與大軸間只有不到1 mm 的油膜間隙,如軸領與大軸間絕緣破壞,軸電壓將沿軸承和底板形成閉合回路產生軸電流。視瓦面油膜破壞情況,輕則使潤滑油劣化進一步惡化軸瓦的運行環境,軸承震動增大,重則對軸瓦放電甚至擊穿,對軸瓦造成電氣侵蝕,灼傷瓦面和鏡板。除了對瓦面和鏡板造成潛在損壞外,如果軸電流足夠大,還會磁化大軸。已知發生過的故障軸電流系大值可達數百安培。有案例[4]表明,某200 MW 汽輪發電機發生軸承油膜被軸電壓擊穿而受破壞,導致較大軸電流。經過近4個月的檢修再次起動并列時,由于軸向剩磁太大,轉軸成為單極直流發電機,感應電動勢產生的軸電流很快使軸瓦冒煙,被迫再次停機進行嚴格退磁,才使剩磁降低。正常的軸電壓對設備本身并不產生直接危害,只有在軸絕緣破壞后才產生后果。因此,軸絕緣的監測的必要性逐漸成為廣泛共識。從某種意義上講,軸瓦的破壞程度取決于軸電流的幅值和作用時間;從運行角度來講,運行人員需要隨時或提前知道軸電流的變化或軸承絕緣的損壞程度。根據這兩種取向,一次設備制造廠家就提出各種對軸絕緣進行監測的方法。
軸絕緣監測方法為了防止軸電流對潤滑油和軸瓦的損害,三峽電站機組主要采用兩種防范手段。一是從結構上入手,在轉子下端對大軸碳刷接地,在上端軸與上端軸領間加酚醛玻璃板絕緣,以防止軸電流形成回路,同時限制大軸對地電位;二是采用軸絕緣監測手段對軸絕緣進行監測,以保證在軸電流達到軸瓦的破壞電流值以前,通知運手持光數字繼電保護分析儀開關電器用智能變電站成為行人員,采取必要的措施。峽機組的生產廠家分別采用了兩類不同的軸絕緣監測方案。一類監測方案是加裝軸CT,通過監測軸電流系上端軸絕緣情況;另一類監測方案是采用兩塊SINEAX V604 通用可編程變送器利用姆歐法對上端軸軸領、軸領與大軸間的銅箔及大軸間的絕緣進行分段系,可參見圖4。手持光數字繼電保護分析儀開關電器用智能變電站成為
2.1 軸CT 電流測量法通過軸CT 對通過大軸的交流電流的大小進行監測的方法是國內機組制造廠商普遍采用的種方法。軸電流監測裝置能夠通過軸CT 將發電機大軸上產生的軸電流檢測出來,并根據不同的軸電流值發出相應的信號,從而有效地防止軸電流的破壞,保護軸承及軸領。同時,軸電流保護裝置還可將測量值轉換為電流或電壓信號送監控記錄。軸電流保護裝置由軸電流互感器和軸電流信號裝置組成。其結構如圖3 所示。軸電流監測裝置主要監測軸電流中的基波分量與三次諧波分量。軸電流互感器在設計上一方面考慮安裝拆卸方便性,設