產品簡介
TAG8800衛星授時遠程無線核相儀用于遠距離(相距300米~800千米)核對高壓相位是否同相,相序顏色是否標注正確。也可用于近距離并網或環網核相。儀器適合1V~220KV輸電線路帶電作業和二次側帶電作業,具有高壓驗電功能。
儀器采用無線傳輸技術,操作安全可靠,使用方便,克服了有線核相器的諸多缺點。儀器采用GPS授時技術,兩臺(或多臺)儀器可以相隔幾百公里核相。儀器采用低功耗藍牙技術與建立連接,兩臺(或多臺)儀器可以通過兩臺(或多臺)相互通訊,所有的數據交互都在自建的服務器上完成。
二、工作原理
發射器可以判斷線路是否帶電,測量線路相位和頻率,并將測量數據發送給主機,主機由GPS授時后同時測量,計算兩臺主機相位差值即為兩線路相位差值,判斷兩線路同異相。
儀器測量原理的核心是兩主機同步測量的時間差異,采用GPS授時將兩主機的時間同步,其同步差異小于10納秒。由此引入的相位誤差小于0.1度。
三、安全事項
1、現場測試時,應按電力部門高壓測試安全距離標準進行操作。
2、標準配置絕緣桿3米,對應電壓等級為 ≤ 220kV。如測量線路電壓高于220KV時,請使用長度大于3米的絕緣桿。
四、技術參數
1、相位差準確度:誤差≤5°。
2、頻率準確度:±0.1HZ。
3、電壓測量范圍為1V~220KV。
4、發射器和接收主機的大傳輸視距約100米。
5、結果判斷(同相、異相)采用*標準,相位差≥30°為異相,相位差<30°為同相。
6、兩GPS主機測量距離300米~800千米。
7、根據GPS信號強弱自動切換GPS模式和授時模式。
8、真人語音提示測量結果和操作步驟。
9、302*240彩屏同時顯示線路相位差、頻率、矢量圖、電池電量、測量時間、經緯度、衛星數量、GPS信號強度等信息。
10、無操作1小時自動關機。
11、發射器和接收器均內置可充電鋰電池,且電池可拆卸更換。
12、主機電池容量為2600mAH,發射器電池容量為350mAH。
13、高壓測量時泄漏電流<10uA。
14、發射器工作功耗<0.1W,接收主機工作功耗<0.3W。
15、工作環境:-35℃--- +45℃ 濕度≤95%RH。
16、儲存環境:-40℃--- +55℃ 濕度≤95%RH。
17、整機重量:約11KG。
18、儀器包裝尺寸:長89cm*寬26cmm*高11cm*2個
武漢華頂電力設備有限公司編制
接地線與中性線須可靠短接,接地線與火線、中線同時布線接至 SYMPHONY 系統用電設備的接線端子。4.2.6 對于沒有電源輸入的設備,如 I/O 端子柜,應用采絕緣銅導線將機柜接地螺栓與其供源 的相鄰模件柜的接地螺栓相連。機柜安裝底座應與機柜等電位。4.2.7 交/直流接地可共用一個接地極,當采用二個接地極時,其間的電阻應小于 l 歐姆。各控制柜的交流地、直流地分別以星形接地方式匯集,多后接入同一地網(本工程為全廠電氣接地網)。接地電阻要求小于5 歐姆。4.2.8 在機柜底部有直流公共排以供連接直流接地,此直流公共排在機柜內與交流地和機柜是隔離的。以與直流接地極相連的接地排為中心,星型連接各個模件柜的直流公共排。各端子柜與其相應的模件柜也用星型接法連接。4.2.9 在有遠程布置的機柜的系統中,遠程機柜可使用自己的接地極,但接地要求是*的,該接地極應與 DCS 主接地極在同一個地網上。4.2.10 統外部信號接線和屏蔽線與接地有關。屏蔽線應該只在單端接地,在機柜側接地時接至機柜兩側的屏蔽棒上,該屏蔽棒與交流安全地連接在一起控制系統中的干擾是一個十分復雜的問題,因此抗干擾措施通過合理的設計或電路中加裝隔離器使之更有效地抑制干擾、抗干擾,對有些干擾情況還需做具體分析,采取對癥下藥的方法,才能夠使控制系統正常工作。闡述了配網自動化建設的實現模式,包括配網自動化系統的總體結構模式、饋線自動化控制模式、配網自動化主站模式、配網自動化子站模式、配網管理終端、通信方式及一次設備選型等。通過比較分析幾種典型的方案,提出一種適用于縣級城市配網自動化系統的基本模式。我國縣級以下城市用電量約占全國用電量的4TAG8800衛星授時遠程無線核相儀風力發電用0%,而配電網絡的供電可靠率遠低于98%,電壓合格率僅有90%。縣級以下城市配電網絡結構以輻射供電為主,環網供電開環運行的環路較少,10kV饋線較長,通常超過10km;饋線以架空線為主,分支線較多;用電負荷較為分散、負荷密度比較小,負荷受季節影響較大;配電變壓器多,但配變容量較小,配電變壓器覆蓋面很廣,選用哪一種性價比更優、更有實用價值的技術方案值得探討。采用配網自動化系統是提高配電網絡供電可靠性的重要技術手段之一。
1系統模式對于一個縣級城市配網自動化系統來說,模式選擇關系到整個縣級城市配網自動化系統技術方案的可行性、合理性TAG8800衛星授時遠程無線核相儀風力發電用及經濟性,必須從整個系統角度考慮。縣級城市配網自動化模式選擇包含以下幾方面:系統總體結構模式、饋線故障處理模式、配網自動化主站模式、配網自動化子站模式、配網管理終端、配網自動化通信模式、一次設備開關及和電流互感器的選擇。一)系統總體結構模式在設計和制定縣級城市配網自動化系統方案時,首先要確定系統的總體結構模式。系統的總體結構是指整個系統分幾個層次進行控制和管理。采用這種分層控制模式可以加速配網故障的自動處理過程,提高系統實時性。各層間既相互獨立又互為備用,以提