朝陽市礦產檢測實驗室廢水處理設備功能特點
隨著經濟的不斷快速發展,我國對礦產資源的需求量變得越來越大。但是,礦產資源的開發利用過程難免對環境造成污染和破壞,金屬礦山酸性廢水的pH值較低,其還含有伴生的重金屬,如不加適當處理就會對環境產生嚴重的污染。所以,金屬礦山酸性廢水的處理技術研究對于環境保護以及可持續發展戰略的實施具有重要意義。
1金屬礦山酸性廢水的來源、特點及危害
1.1金屬礦山廢水的來源
金屬礦山廢水已經成為環境污染的主要源頭,其主要來自于礦山廢石場、礦坑中部。金屬礦山廢水中含有諸多雜質,在風吹、日曬、雨淋等各種外界因素的作用下,硫化礦會快速溶解。礦坑廢水水量和自然降水水量存在很大的差異,主要原因在于礦坑廢水所在的位置、標高等的不同。
朝陽市礦產檢測實驗室廢水處理設備功能特點
1.2酸性廢水的特點
酸性廢水具有以下特點:一是采礦廢水中的酸性水,其中含有諸多金屬離子,在特定的情況下,水質會發生變化,由酸性變成堿性;二是水量大,水流時間比較長;三是難以對廢水進行有效控制,因為排水點比較分散,水量波動比較大;四是采礦廢水的性質還受到外界因素的影響,如溫度、硫化礦氧化的速度等。
實現水環境質量改善和水生態功能提升是水污染防治工作的根本目的.在控制工農業和城市污染的基礎上, 整治河流水環境、尤其是城市水環境是當前一項急迫的任務(Lake et al., 2007; Martinezpaz et al., 2014).在東北寒冷地區, 如何利用人工濕地凈化低濃度污水和低污染河流水、提升水環境質量, 是一個難題.近年來人工濕地技術的研發與應用, 為水環境治理提供了多種選擇, 提高濕地效率和生態景觀效果是技術層面需要繼續突破的難題.渾河中游課題開展了濕地的構型和運行方式設計等大量技術研究, 其中針對國內研究較少的潮汐流人工濕地, 運用分子生物學技術對潮汐流-潛流組合工藝中微生物群落分布特征進行深入分析, 應用PCR-DGGE技術識別系統中微生物群落, 對比分析群落活性與功能, 分析微生物群落結構與代謝特征變化, 明確潮汐流-潛流組合工藝系統中不同單元的菌群功能特征, 為進一步闡明人工濕地強化生物脫氮除磷的生物學機制提供了理論參考.
(3)水中的NO2--N和NO3--N對人和水生生物有較大的危害作用。*飲用NO3--N含量超過10mg/L的水,會發生高鐵血紅蛋白癥,當血液中高鐵血紅蛋白含量達到70mg/L,即發生窒息。水中的NO2--N和胺作用會生成亞硝胺,而亞硝胺是“三致”物質。NH4+-N和氯反應會生成氯胺,氯胺的消毒作用比自由氯小,因此當有NH4+-N存在時,水處理廠將需要更大的加氯量,從而
增加處理成本。近年來,含氨氮廢水隨意排放造成的人畜飲水困難甚至中毒事件時有發生,我國長江、淮河、錢塘江、四川沱江等流域都有過相關報道,相應地區曾出現過諸如藍藻污染導致數百萬居民生活飲水困難,以及相關水域受到了“牽連”等重大事件,因此去除廢水中的氨氮已成為環境工作者研究的熱點之一。
3氨氮廢水處理的主要技術
目前,國內外氨氮廢水處理有折點氯化法、化學沉淀法、離子交換法、吹脫法和生物脫氨法等多種方法,這些技術可分為物理化學法和生物脫氮技術兩大類。
3.1生物脫氮法
微生物去除氨氮過程需經兩個階段。*階段為硝化過程,亞硝化菌和硝化菌在有氧條件下將氨態氮轉化為亞硝態氮和硝態氮的過程。第二階段為反硝化過程,污水中的硝態氮和亞硝態氮在無氧或低氧條件下,被反硝化菌(異養、自養微生物均有發現且種類很多)還原轉化為氮氣。在此過程中,有機物(甲醇、乙酸、葡萄糖等)作為電子供體被氧化而提供能量。常見的生物脫氮流程可以分為3類,分別是多級污泥系統、單級污泥系統和生物膜系統。