汕頭市學校實驗室污水綜合處理設備適用范圍
臭氧氧化技術用于廢水處理有如下2種情況:(1)臭氧作為預處理或后處理,與其他方法聯合使用,如絮凝+臭氧、臭氧+生物濾池(生物活性炭法等)、臭氧+膜處理;(2)臭氧自身氧化處理,如:臭氧、臭氧-雙氧水、臭氧-雙氧水/UV光氧化、臭氧/UV光氧化、臭氧-固體催化劑(固體催化劑如活性炭等)。
1臭氧氧化作為預處理或后處理與其他方法聯合使用
將污水進一步混合,充分利用池內高效生物彈性填料作為細菌載體,靠兼氧微生物將污水中難溶解有機物轉化為可溶解性有機物,將大分子有機物水解成小分子有機物,以利于后道O級生物處理池進一步氧化分解,同時通過回流的硝炭氮在硝化菌的作用下,可進行部分硝化和反硝化,去除氨氮。
設計特點
內置高效生物彈性填料,又具有水解酸化功能,同時可調節成為O級生物氧化池,以增加生化停留時間,提高處理效率。
汕頭市學校實驗室污水綜合處理設備適用范圍
廢水厭氧生物處理是利用厭氧微生物的代謝過程,在無需提高氧氣的情況下把有機物轉化為無機物和少量的細胞物質,這些無機物主要包括大量的沼氣和水。這種處理方法對于低濃度有機廢水,是一種高效省能的處理工藝;對于高濃度有機廢水,不僅是一種省能的治理手段,而且是一種產能方式。厭氧生物處理技術現已廣泛應用于世界范圍內各種工業廢水的處理,它的處理工藝主要有普通厭氧消化,厭氧接觸工藝,上流式厭氧污泥床(UASB),厭氧流化床,厭氧生物轉盤等。該工藝將環境保護、能源回收和生態良性循環有機結合起來,能明顯地降低有機污染物,用厭氧處理高濃度有機廢水有較高的處理效果,BOD去除率可達90%以上,COD去除率可達70%—90%,并將大部分有機物轉化為甲烷。用該法處理廢水成本比好氧處理要低[6],設備負荷高,占地面積少,產生剩余污泥量較少,可直接處理高濃度有機廢水,不需要大量稀釋水,并可使在好氧條件下難于降解的有機物進行降解,但它仍有不足之處,其初次啟動過程較慢,對有毒物質較為敏感,操作控制因素比較復雜,且出水COD濃度高于好氧處理,仍需要后續處理才能達到較高的排水標準。如孫劍輝[7]等研究的用鐵屑作填料的UBF酸化反應器與UASB組成的兩相厭氧系統能夠穩定、高效地處理Zn 5—ASA廢水。實驗結果表明:此系統在UBF與UASB的HRT分別控制在5.95h和11.43h時,UBF與UASB的OLR(以COD計)分別高達58.44和17.01kg/(m3.d)。對SCOD和BOD5的總去除率分別達90%和95%左右,具有系統運行穩定、處理效率高等優點,系統中UBF反應器所選用的鐵屑填料,通過微電解作用,能夠有效提高廢水的可生化性,且可省去通常的調堿工序,為難降解有機廢水的處理開辟了新途徑。
根據上面的敘述,我們可以知道,盡管水處理方法經過一百多年的發展,至今已比較成熟,但是在廢水處理這一領域上,仍存在很多問題,僅靠單一的處理工藝是很難使出水達標排放的,必須對現有的工藝進行集成,采用多種工藝聯合處理的方法,才能達標排放,甚至是變廢為寶,實現資源綜合利用的目的。如吸附—混凝—高級化學氧化法、內電解混凝沉淀—厭氧—好氧法、UBF——UASB兩相厭氧法、水解—接觸氧化法、氣浮—兼氧—CASS法、OFR—SBR法等,廢水經過這些工藝的處理后均能達標排放。筆者認為廢水治理的關鍵在于準確分析出該廢水的實際水質特性(特別是對廢水內有機物的辨析),以及其在不同溫度、酸堿度、厭氧和好氧等條件下各組分的變化情況,如果掌握了以上信息,在現有科學技術的基礎上就能找到一種真正工藝簡單、操作簡便、處理*、節省能源且成本低廉的處理方法。