Ni201高壓承插管件美標口徑3000LB,圖26mm板A-TIG焊背面成形圖3 T型縱向角焊縫1.44×圖4 T型角縫宏觀1.5×2.4焊接接頭的化學成分分析及力學性能試驗使用活性化焊劑焊接得到的焊縫金屬化學成分見表3,附合ASME SB-127規范要求。按照JB4708-2000《鋼制壓力容器焊接工藝評定》及《壓力容器監察技術規程》制備試樣及試驗,按照GB228-2000《金屬拉伸試驗方法》,GB229-1994《金屬夏比缺口沖擊試驗方法》進行拉伸試驗和彎曲試驗。所得到的焊接頭的力學性能如表4所示。焊縫區(柱狀晶)100×b)熔合區(胞狀晶+等軸晶)100×c)粗晶區(等軸晶)100×d)母材(樹狀晶)100×圖510mm板A-TIG焊焊接接頭的微觀組織表3 A-TIG焊熔敷金屬的化學成分(w)%C Ni Cu Mn Si Fe S A表4 A-TIG焊焊接接頭的力學性能試驗報告(10mm板,雙面焊)Rm/MPa彎曲試驗(D=4a,B=20mm,α=180°)500,505(均斷于焊縫區)面彎合格(2件)背彎合格(2件)≥485(符合ASME SB-127)合格3試驗結果分析討論圖1表明,使用氬弧焊活性化焊劑后焊縫熔深可增加到2倍。
拉筋套筒的接頭形式拉筋構件的結構簡單,為保證焊縫質量,包裹的Monel合金套筒之間(包括環縫和縱縫)以及套筒與兩端碳鋼之間均采用搭接接頭,其中套筒之間的搭接量至少應有25mm,為密封角焊縫.2.2導管架套筒接頭形式相對于拉筋,導管架的結構略為復雜.由于過渡段以及與拉筋焊接節點的存在,給現場施工帶來了一定的困難.考慮到貼合強度和貼合緊密程度的要求,過渡段的環縫采用對接接頭,在車間內預制完成,其余焊縫采用搭接接頭。
為了探明變形后接合強度的變化,把CL一3復合鋼作了下述三種處理:①用1 .5 tR彎曲90“后復原,②把另外的試樣向相反的方向彎曲900復原,③施以達大載荷的均勻拉伸變形(約20%),然后分別制取剪切試樣并進行試驗。另外,彎曲變形時,是取先受拉伸變形的一側作為試驗的部位。 3.可娜性試臉 為了選擇適當的過渡層和確定接頭性能,進行了以下試驗。 (l)對接焊試驗 用CL一1復合鋼按圖1所示的坡口進行了對接焊。
1、純鎳:N5、N02201、Ni201、2.4068、Ni99.0LC、N6、N7、N02200、Ni200、2.4066、Ni99.0 。
2、蒙乃爾(Monel):N04400、N05500、Monel K500、國標:67Ni30Cu。
3、因科洛伊合金:N08800、Incoloy800、N08810、Incoloy800H、N08811、Incoloy800HT、N08825、Incoloy825、N08020、N08028、N08031 、Alloy31、Alloy28合金、Alloy20合金、ZRJWXTG。
4、 因科奈爾合金:N07750、Inconel-X750合金、N07718、Inconel718合金、N06600、Inconel 600、N06601、Inconel601合金、N06690、Inconel690合金、Inconel600合金、N06600、N06625、Inconel625合金。
5、哈氏合金:Hastelloy B-2、Hastelloy B-3、Hastelloy C-276、Hastelloy C-22、Hastelloy C-2000、Hastelloy G-30。
在工業應用中有對焊鋼管、高頸鋼管、鋼管蓋、盲板、以及板式鋼管。制造業中不銹鋼鋼管的使用量較大,特種鎳鋼管可以提高機械強度,不銹鋼鋼管中含有80%的鎳,該合金鋼管斷裂強度大,可以用于制造發動機和燃氣渦輪機。精密鋼管的化學穩定性高,是重有色金屬中耐蝕性的金屬之一,對苛性堿的抗蝕能力強。純鎳鋼管在50%的沸騰苛性鈉溶液中鎳每年的腐蝕速度25um,20年內不會發生銹痕;
現在采用未退火蒙乃爾材料加工焊接的零件沒有再出現漏氣現象。由于升溫和降溫時間較短,采用臥式氫爐焊接的蒙乃爾材料零件表面沒有發現晶粒長大的現象。采用立式氫爐和真空爐焊接,由于其升溫和降溫時間較長,經過高溫焊接后蒙乃爾材料零件表面發現晶粒長大的現象,隨著處理溫度的提高和時間的延長,晶粒間界逐漸變大。雖然蒙乃爾材料晶粒長大出現大量晶界并不足以使零件漏氣,但會使蒙乃爾材料的強度下降和滲氣等現象的發生。
ERNiCu-7 填充ERNiCu-7 0搭接/ERNi-1 焊縫檢驗及結果焊縫外觀檢驗合格后,先按照ASMEⅤ規范進行滲透探傷(PT),再按ASMEⅨ規范中相關章節的標準進行力學性能檢驗.將搭接接頭五等分取樣后,分別進行機加工,對五個樣品的橫斷面進行宏觀和金相觀察的結果表明,接頭的根部焊透,焊縫中未見氣孔、未熔合及裂紋等缺陷,檢驗合格.對接接頭的抗拉強度為545MPa和546MPa,彎曲試驗件的測試面無任何缺陷.試驗結果表明,其力學性能符合ASMEⅨ規范,檢驗結果合格。
圖4孔隙度為40%時不同粒度的壓縮行為局部放大3由圖4可見,性應變區域為0.01以內,在此區域當加載力取消時,應變將恢復原狀。應變>0.01,隨著應力的增加,樣品發生塑性變形,選擇開始發生塑性變形時的點取值屈服強度。從圖4中可以看到,壓縮屈服強度和性模量都隨著粒度的減小而增大,并且以75μm為臨界點,當小于這一粒度值時,屈服強度和性模量升高得很快,而且這種現象要比孔隙度為26.5%時明顯,這示粒度對屈服強度及性模量的影響會隨著孔隙度的增加而增加。
具有良好的物理性能和機械性能、耐蝕性能,在200-1090℃范圍內能耐介質的侵蝕,具有良好的高溫和低溫性能。同時鎳基高溫合金鋼管也是制造渦輪葉片、發動機和燃氣輪機等受熱部件的主要零部件材料,鎳基合金鋼管是一種未來發展的重要材料;
合金的物理性能-密度8.14t/m3。
-熔化溫度范圍1370-1400℃。
-比熱440j/Kg.℃。
-居里溫度<-196℃。
-抗拉強度850MPa。
合金的機械性能-屈服強度350MPa。
伸長率30%。
鎳合金是當代高技術兵器和高科技領域重要的制造材料。鑲在各個領域的用途比,以美國為例:不銹鋼、合金鋼47%,非鐵基合金33%,鍍層16%,其它4%。 鑲在合金鋼中主要溶入鐵素體而不形成碳化物。鎳加入后,鋼的晶粒在加熱時不易長大,從而形成細晶粒結構,鋼的強度提高、塑性和韌性也好,特點是鑲能使鋼的低溫沖擊韌性改善。所以,鑲鋼一問世,便受到人們的重視。初應用于制造裝甲。實驗表明,含鑲3寫的鋼,具有異常的抗的能力,再加上*的韌性,自然就成為良好的裝甲材料。
擴展位錯很寬,在高溫熱變形時,變形產生的位錯交滑移和刃位錯的攀移均較難進行,位錯從結點和位錯網中解脫出來,與異號位錯相互抵消,使得高頸鋼管中的位錯密度增加,材料變形的儲能變大,變形產生的軟化作用以動態再結晶為主。同時,隨著變形溫度升高,WN鋼管變形過程中,產生的熱震動能不斷增加,對材料的軟化作用不斷變強,因此,在同一應變速率條件下,流變應力隨變形溫度升高,且流變應力峰值,隨變形溫度升高,向應變量小的方向移動;
開始研制這類合金是在20年代。1941年英國首先開始生產尼莫尼克(Nimonic)系列鑲基高溫合金。初生產的為尼莫尼克75(Ni一20Cr一0.4Ti一o·IC)。為了進一步提高抗蠕變強度,又在其中加入鋁,研制成尼莫尼克80(Ni一20Cr一2.STi一1.3AI)。隨后又研制出更好的尼莫尼克90、尼莫尼克105、尼莫尼克115.美國在40年代中期、蘇聯在40年代后期、我國在50年代中期也都先后研制出了鑲墓高溫合金。但這時期的鑲基高溫合金大多是變形合金。
電子工業還利用蒙乃爾合金腐蝕的引線的耐熱門、泵、燃燒裝置以及抗氯離子腐蝕的耐蝕結構件c¨、如r 0、 蒙乃爾合金為鐐-銅固溶體基體,含有合金元素錳、硅,-甩以改善合金的機械性能,元素鐵在合金中單獨存在時,作為雜質會對合金的抗蝕性產生不嵌影響≈當鐵一錳、硅元素同時存在時j也能起到改善機械性能的作用。添加合金元素鋁和鈦能夠形成金屬問化合物。在產生時效硬化作用的同時,會降低合金的抗蝕性能。