詳細介紹
地埋式二級生化工藝污水處理設備
地埋式二級生化工藝污水處理設備——用途:
·原有污水處理廠、自來水廠的升級、改造;
·市政生活污水處理廠、自來水廠的新建;
·高濃度有機廢水的處理;
·純水生產預處理;
·中水回用;
·市政生活;
·醫院廢水;
·洗滌廢水;
·工業廢水;
·食品廢水;
單級全程自養脫氮(CANON)工藝
1999年THIRD K A等首先提出,CANON是一種基于亞硝酸氮的單級全程自養脫氮工藝,其理論基礎是在一體化反應器體系內同時實現半短程硝化與厭氧氨氧化反應。在生物膜表面或顆粒污泥表面,由于處于低溶解氧環境,部分氨氮在氨氧化菌的作用下被氧化成亞硝酸氮;在生物膜內部或顆粒污泥內部,由于處于厭氧環境,產生的亞硝酸氮和剩余氨氮在厭氧氨氧化 菌的作用下反應生成氮氣,并產生很少量的硝酸氮,從而實現氨氮從廢水中的去除。
該工藝去除氨氮的影響因素有溫度、DO、ph值、水中游離氨(FA)、有機物、重金屬離子、重金屬沉淀物等。CANON工藝雖然革新了傳統生物脫氮的思路,但要大規模工程化還存在一些局限性。例如啟動周期長,厭氧氨氧化反應階段的功能菌 AnAOB增殖緩慢,世代時間為7~14 d,是反硝化菌的幾十倍,因此富集培養困難,世界上個生產性裝置啟動時間長達3.5年;其次溫度要求高,現已報道的CANON 工藝基本都是30 ℃以上,并不是所有廢水都能達到該標準,若加熱勢必會帶來能耗增加,運行易失穩,由于亞硝酸鹽積累而進行排泥,結果降低了反應器的生物質濃度 造成系統失穩;還會排放溫室氣體N2O。
CANON 工藝是迄今為止更為新型的生物脫氮方法,與傳統的生物脫氮工藝相較有明顯的優勢,因而有廣闊的應用前景,目前CANON已逐步向實際工程推進,但作為一項新型脫氮工藝,其還存在一些問題尚需改進與解決。(
污水中溶解氧控制的依據和調整方法
1原水水質:一般原水中有機物含量越多,微生物分解代謝的耗氧量越多,以及硝化反應等對溶解氧的需求,所以控制溶解氧時要注意進水水量的變化和進水中有機物的含量。
2活性污泥濃度:在達到去除污染物、并到達排放濃度的情況下要盡量的降低活性污泥的濃度,這對于降低曝氣量、減少電力消耗非常有利。同時,在低活性污泥濃度情況下,更要注意不要過度曝氣,否則會出現污泥膨脹,使得出水混濁;當然,高的活性污泥濃度需要較高的溶解氧,否則會出現缺氧現象,使得污水處理效果受到抑制。
3污泥沉降比:過度的曝氣會使細小的起泡附著在活性污泥的菌膠團上,導致活性污泥上浮到液面,使得污泥沉降性能變差。在實際操作中應該注意這個問題,特別是發生污泥絲狀膨脹時候,更容易導致曝氣的細小氣泡附著在菌膠團上,繼而導致液面出現大量浮渣。
4pH:通過對活性污泥濃度及微生物等的影響,間接的影響到溶解氧量。所以在污水處理控制時,除了要充分了解調節池功能外,還要與排放單位建立系,了解污水水質情況,以便投加合適的試劑中和異常的pH。
5溫度:不同溫度下,污水中的溶解氧濃度不同,會對活性污泥濃度及微生物等產生影響。低溫、高溫都會影響水中溶解氧和微生物活性,使得污水處理效率低下。對于北方的低溫,通常是建立地下或半地下室或室內處理;對于高溫天氣,則是通過調節池來調節池內溫度進而提高處理效率。
6食微比(F/M):食微比越高,越低,需氧量相對就越高,這可以知道我們在水處理過程中通過食微比值來達到節能的目的,即在保證處理效果的前提下,盡量提高食微比,以避免不必要的曝氣消耗。
閘門、閥門日常管理維護
①閘門與閥門的使用及保養
a.閘門與閥門的潤滑部位以螺桿、減速機構的齒輪及蝸輪蝸桿為主,這些部位應每三個月加注一次潤滑脂,以保證轉動靈活和防止生銹。有些閘或閥的螺桿是裸露的,應每年至少一次將裸露的螺桿清洗干凈涂以新的潤滑脂。有些內螺旋式的閘門,其螺桿長期與污水接觸,應經常將附著的污物清理干凈后涂以耐水沖刷的潤滑脂。
b.在使用電動閘或閥時,應注意手輪是否脫開,板桿是否在電動的位置上。如果不注意脫開,在啟動電機時一旦保護裝置失效,手柄可能高速轉動傷害操作者。
c.在手動開閉閘或閥時應注意,一般用力不要超過15kg,如果感到很費勁就說明閥桿有銹死、卡死或者閘桿彎曲等故障,此時如加大臂力就可能損壞閥桿,應在排除故障后再轉動;當閘門閉合后應將閘門手柄反轉一二轉,這有利于閘門再次啟動。
d.電動閘與閥的轉矩限制機構,不僅起過扭矩保護作用,當行程控制機構在操作過程中失靈時,還起備用停車的保護作用。其動作扭矩是可調的,應將其隨時調整到說明書給定的扭矩范圍之內。有少數閘閥是靠轉矩限制機構來控制閘板或閥板壓力的,如一些活瓣式閘門、錐形泥閥等等,如調節轉矩太小,則關閉不嚴;反之則會損壞連桿,更應格外注意轉矩的調節。