詳細介紹
WSZ-F-3地埋式污水處理設備
WSZ-F-3地埋式污水處理設備——設備主要構成
1、污水的隔油沉淀——隔油池是利用油與水的比重差異,分離去除污水中顆粒較大的懸浮油的一種處理構筑物。廢水中的油脂水面,由集油管收集后排出。在隔油池中沉淀下來的懸浮物及其他雜質,積聚到池底污泥斗中,定期由環衛部門抽走。經過隔油處理的廢水則溢流到排水渠中排出池外,進行后續處理。
2、污水的調節——由于食品加工廢水的水質、水量波動較大,因而必須加強調節以穩定污水的水質、水量,以保證后續生化處理的效果。
3、水解酸化反應——由于該種污水有機濃度不是很高,可以不采用厭氧消化處理,僅需采用水解酸化工藝即可。
水解酸化過程中起作用的細菌為水解細菌、產酸菌,均在無氧條件下,不需要動力曝氣,因而水解酸化池能在無能耗的條件下將有機物部分降解,降低了運行成本;同時酸化水解菌能將大分子的難降解的有機物轉化為小分子易降解的有機物,提高后續好氧處理單元的處理效果。采用水解酸化工藝,可大大縮短好氧生化所需的時間;同時處理后出水水質更好,既節省了投資,節約了運行成本,又提高了環境效益。
好氧接觸氧化反應——生化處理主要通過好氧處理,在污水中提供足夠溶解氧的情況下,依靠好氧微生物的吸附和降解將污水中的絕大部分有機物去除。
工藝流程說明
生活污水經化糞池,分離大量糞便、紙屑等顆粒較大的沉淀物質。上清液自流到調節池中,進行水質水量的調節,出水通過泵提升到水解酸化池中,池中設置當前新型的組合填料,大量的細菌及較高級的微生物可在填料表面附著生長,形成生物膜。廢水流經水解酸化池中填料時,其上的厭氧發酵菌將廢水中的大分子以及大部分有機物進行分解,提高廢水的生化性便于后續處理。水解酸化池出水自流入接觸氧化池中進行深度生化處理,接觸氧化池中設置有生物填料,在生物填料上附著有一層生物膜,生物膜對于水中的有機物進行吸附、吸收、降解,從而使廢水中的有機物得以充分凈化;接觸氧化池出水再進入斜管沉淀池,經沉淀處理后,污水中的大部分懸浮物和部分有機物給去除下來。沉淀池出水進入水消毒池消毒處理后達標排放。 斜管沉淀池污泥由污泥泵自動控制打入水解酸化池進行厭氧處理。
微生物代謝過程簡介
1、廢水生物處理過程中微生物代謝過程示意圖
2、微生物代謝的基本要素
①能源:化學能,或光能——化能營養型、光能營養型;
②碳源:有機碳,或無機碳——異養型、自養型;
③無機營養元素——又分為宏量元素,如:N、P、S、K、Ca、Mg等,在處理工業廢水時,N、P元素與所需要去除的有機污染物之間的營養平衡問題有時會很關鍵,必要時就需要在進行中投加一定量的N、P;以及微量元素,如Fe、Co、Ni、Mo等,微量元素對于某些特殊的細菌如產甲烷細菌等的生長十分重要,因此在設計和運行厭氧生物反應器時,應給予足夠的重視,否則會出現所謂的“微量元素缺乏癥”;
④特殊有機營養物(也稱生長因子,如維生素、*等):對于某些特殊細菌,某些特殊的維生素對其生長的影響會很大,因此,在必要時應考慮補充。
3、廢水生物處理中涉及的微生物代謝過程主要有:
①化能異養型代謝:在廢水生物處理主要的代謝形式,主要用于對廢水中有機物的去除,包括主要的好氧細菌和厭氧細菌;
②化能自養型代謝:也是廢水生物處理中常見的一種代謝形式,主要包括硝化細菌(將氨氮氧化為亞硝酸鹽,或進一步氧化為硝酸鹽)、氫細菌(對其的應用還處在研究階段)、鐵細菌等;
③光合異養型代謝:利用光合細菌以高濃度有機廢水為基質生產菌體蛋白
④光合自養型代謝:在廢水生物處理中少有應用。
廢水生物處理中的微生物
1、細菌:
主要包括真細菌(eubacteria)和古細菌(archaebacteria);是廢水生物處理工程中主要的微生物;
根據需氧情況不同:好氧細菌、兼性細菌和厭氧細菌;
根據能源碳源利用情況的不同:光合細菌——光能自養菌、光能異養菌;非光合細菌——化能自養菌、化能異養菌;
根據生長溫度的不同:低溫菌(-10ºC~15ºC)、中溫菌(15ºC~45ºC)和高溫菌(>45ºC)。
2、真菌
真菌的三個主要特點:
①能在低溫和低pH值的條件生長;
②在生長過程中對氮的要求較低(是一般細菌的1/2);
③能降解纖維素。
真菌在廢水處理中的應用:
①處理某些特殊工業廢水;
②固體廢棄物的堆肥處理
3、原生動物、后生動物:
原生動物主要以細菌為食;其種屬和數量隨處理出水的水質而變化,可作為指示生物。
后生動物以原生動物為食;也可作為指示生物。