詳細介紹
淀粉廠污水處理設備
淀粉廠污水處理設備——設計原則
1、充分考慮二次污染的防治,設備要求噪聲低,處理站附近區域無明顯異味,處理設施要有密封措施,盡量減少對周圍環境的影響;
2、系統操作簡單,維護管理方便;
3、處理系統能自動運行,經常性運行費用低,投資省;
4、污泥產生量少,并能保證污泥有可靠的出路;
5、處理設施應具有較大的適應性、應急性、可滿足水質、水量的變化,并考慮突發事故狀態的各種應急措施。
復合式多介質過濾法方案
1復合式多介質過濾法及其工作原理
復合式多介質是一種物理水處理法,整個工藝流程不需要添加任何化學藥劑,設備機組集成自動化、智能化控制,耗能低,安全穩定性較高,水處理設備系統更換后的介質不會對環境造成污染,可以直接填埋。同時由于水處理設備系統是自動控制系統和監控系統,系統程序一旦設定好,不需要過多的人員對其實時監控,節約了維護人員的投入,相應地也節省了維護費用。
復合式多介質過濾法工藝流程
通過原水加壓系統的加壓泵將待處理的水抽入水處理系統,經全自動逆洗多介質深度處理,其中,全自動逆洗深度處理系統中設有活性炭吸附過濾器,其作用是去除水中的異味和你好化物等。除砷、鐵/錳裝置。作用是去除水中的砷、鐵/錳等雜質和有害物質。阻垢器。可防止水中的鈣和鎂經加熱后反應生成碳酸鈣。原水紫外線消毒系統。主要作用是對管網水進行殺菌,分解臭氧等。
生物膜法生物濾池
生物膜法中常用的一種生物器。使用的生物載體是小塊料(如碎石塊、塑料填料)或塑料型塊,堆放或疊放成濾床,故常稱濾料。與水處理中的一般濾池不同,生物濾池的濾床暴露在空氣中,廢水灑到濾床上。布水器有多種形式,有固定式的,有移動式的。回轉式布水器使用廣。
它以兩根或多根對稱布置的水平穿孔管為主體,能繞池心旋轉。穿孔管貼近濾床表面,水從孔中流出。布水器的工作是連續的,但對局部床面的施水是間歇的,這承繼了污水灌溉間歇灌水的概念。濾床的下面有用磚或特制陶塊、混凝土塊鋪成的集水層。再下面是池底。集水層和池外相通,既排水又通風。
工作時,廢水沿載體表面從上向下流過濾床,和生長在載體表面上的大量微生物和附著水密切接觸進行物質交換。污染物進入生物膜,代謝產物進入水流。出水并帶有剝落的生物膜碎屑,需用沉淀池分離。生物膜所需要的溶解氧直接或通過水流從空氣中取得。在普通生物濾池中,生物粘膜層較厚,貼近載體的部分常處在無氧狀態。
濾床的深度和濾率、濾料有關。碎石濾床的深度在一個相當長的時間內大多采用1.8~2米左右。深度如果提高,濾床表層容易堵
污水處理中溶解氧(DO)
為了防止進入二沉池的混合液發生反硝化或釋磷,引起污泥上浮,影響出水水質和除磷效果,進入沉淀池的混合液中通常保證一定的DO濃度,且好氧池DO不足會抑制硝化菌的生長,其對DO的忍受極限為0.5~0.7mg˙L.
增加溶解氧有利于硝化作用的進行,好氧末端DO對A2O工藝脫氮除磷的影響,結果表明隨著末端DO的增大,系統硝化速率提高,NH+4-N的去除率從60%升高到90%以上,TN的去除率從54%升高到67%,總磷的去除率也有所提高,好氧池的DO>2mg˙L以后,硝化速率開始減緩,繼續增大DO對硝化進程不僅沒有大幅加快,還可能使回流污泥和回流混合液中DO濃度偏高,不利于厭氧段釋磷和缺氧段反硝化,根據實踐經驗將好氧段DO控制在2mg˙L為宜,高不超過3mg˙L。缺氧段DO會與硝酸鹽競爭電子供體,較高的DO還會影響硝酸鹽還原酶的合成及活性,一般缺氧段的DO不超過0.5mg˙L為宜。的厭氧環境有利于聚磷菌的釋磷,但回流污泥不可避免的帶入部分DO和NO-x-N,實際操作中厭氧段DO<0.2mg˙L即可。
A2O工藝運行中系統污泥濃度和泥齡對脫氮除磷有重要影響,研究表明,當厭氧池、缺氧池、好氧池中的MLSS維持在3000~3800mg˙L,且三個反應器中的MLSS值接近時,系統具有較好的脫氮除磷效果。厭氧池聚磷菌和缺氧池反硝化細菌屬于短泥齡微生物,短泥齡有利于除磷和反硝化,一般缺氧池的泥齡為3~5d,好氧池中自養硝化細菌增殖速度慢,世代周期長,要使自養硝化細菌在系統中維持一定的數量,成為優勢菌群,好氧段需要20~30d的長泥齡,但同時長泥齡使含磷污泥的排放過少,且在較高的泥齡下聚磷菌為維持生命活動分解聚合磷酸鹽,可能使磷從含磷污泥里重新釋放出來,不利于系統除磷,一般系統若以除磷為主要目的,泥齡可控制在6~8d,另外,反硝化聚磷菌的發現使系統在缺氧段脫氮的同時也能使磷得到部分去除,研究發現,當系統的SRT在15d時缺氧段具有較高的脫氮除磷效果。為了兼顧脫氮除磷,建議污泥齡為硝化菌的小世代期的2倍以上,權衡考慮將污泥齡控制在8~15d較合適。
工藝流程
廢水及生活污水,經預處理達到接管標準后,沿市政污水管網匯入該污水處理廠提升泵房的集水井。集水井前面設機械格柵用來去除污水中大顆粒的懸浮物(SS)及漂浮物,以預防后續水泵、管配件及管線的堵塞現象,進而有利于系統穩定、運行。污水進提升泵提升后通過細格柵進入旋流沉砂池。
在生化處理前放置流量計,對污水進行計量并平衡2組生化處理系統的處理水量。生化處理系統采用A2/O工藝,生化池出水進入生化沉淀池。污水在生化沉淀池進行泥水分離,上清液進入沉淀池進一步處理,污泥進入生化污泥配泥池,并通過污泥回流泵回流至生化池前端,剩余污泥定期排入污泥貯存池。
污水自流進入深度處理的沉淀池,在混合反應區內靠攪拌器的提升、混合作用完成泥渣、藥劑和原水的快速凝聚反應,然后至推流反應區進行慢速絮凝反應,以結成較大的絮凝體,礬花慢速的從預沉區進入到沉淀區,使大部分礬花在預沉區沉淀;再逆向流到斜管沉淀區,將剩余的礬花沉淀,進一步去除COD、NH3-N、TP,澄清液通過集水槽收集進入二次提升泵房。
污水經深度處理提升泵站提升后進入纖維濾池,進一步去除SS,出水經紫外線消毒殺菌達標后排出。深度處理過濾設施定期進行反洗,反洗水自流至廢水池。出水主要采用重力自流排入老夏港河,當洪水季節外水位較高,無法自流排放時,啟用出水泵將出水提升至出水壓力井排出
改造后的污水處理系統*解決了原系統耐沖擊能力差的問題?接種了高效微生物的固定化厭氧生物濾池具有非常高的反硝化效率, 可以去除大部分COD, 其對COD?NH3+-N?NO3--N 的去除率分別達到了96.50%?96.47%?99.23%,保證了后續工藝的穩定運行?
對含有抑制或殺滅好氧微生物代謝活動的物質的水樣,直接用通常方法測定BOD5的結果會偏離實際值,必須在測定前做相應的預處理,這些對BOD5測定有影響的物質和因素包括重金屬及其他有毒的無機物或有機物、余你好等氧化性物質、pH值過高或過低等。
BOD5的測定是一個生物化學耗氧過程,水樣中的微生物以水中有機物為營養生長繁殖的同時,分解有機物并消耗了水中的溶解氧,因此水樣中必須含有一定數量的對其中有機物有降解能力的微生物。