詳細介紹
組合式生活污水處理設備
組合式生活污水處理設備——提標改造總體工作思路
1.1 特征污染物識別
對工業聚集區的既有排污企業進行摸底調查,了解其生產工藝和主要原材料,分析其可能產生的污染組分。逐一調研其所屬行業排放廢水的水質特點和行業排放標準,了解企業內部既有的廢水處理工藝,分析廢水中可能存在的TDS、難降解有機物、有毒有害物質、有機磷、不可氨化的有機氮等制約達標排放的限制性因素,為制定有針對性的提標改造方案奠定基礎。
1.2 搜集實際進出水水質資料、分析污染組分、水質特點、變化規律和現狀設施能夠達到的處理效果
分析工業聚集區廢水處理廠實際進水水質,重點關注pH、油、懸浮物、色度、堿度、重金屬、鐵、銅、、TDS、苯系化合物、氯系化合物、醫藥中間體、特殊顯色基團等非常規檢測的污染物含量。通過分析B/C判斷可生化性,分析氨氮和總氮指標的差值判斷生物脫氮的可行性,通過長歷時的生物處理試驗判斷難降解COD的含量,通過觀察生物反應池內的污泥性狀了解來水的生物毒性。
了解運行過程中曾經出現過的異常現象,如污泥分散、污泥上浮、進水pH和顏色變化、懸浮物和漂浮物含量變化等等,分析進水水質的變化規律。
搜集實際出水水質指標及其變化規律,將其與排放標準對照,分析提標改造需要強化去除的污染物指標;與進水水質對照,分析現狀設施運行效能。
R1和R2中AGS啟動后, 與運行初期相比, 顆粒粒徑增大, 顆粒內部的層狀空間結構逐漸完整, 能夠實現SND, 因此R1內后續的好氧環境下硝化形成的NO3--N可通過SND被去除, NO3--N濃度有所降低, 一定程度上減輕了NO3--N對PAOs的抑制程度.除此之外, AGS的層狀空間結構也對PAOs也起到了一定的緩沖保護作用, 因此顆粒化后R1和R2的出水COD和TP濃度能夠穩定保持在50 mg·L-1和0.5 mg·L-1以下, 處理效果穩定, 滿足《城鎮污水處理廠污染物排放標準》(GB 18918-2002)的一級A標準.
基本要求有:
(1)為污泥絮凝提供有利的物理、化學和力學條件,使厭氧污泥獲得并保持良好的沉淀性能;
(2)良好的污泥床常可形成一種相當穩定的生物相,保持特定的微生態環境,能抵抗較強的擾動力,較大的絮體具有良好的沉淀性能,從而提高設備內的污泥濃度;
(3)通過在污泥床設備內設置一個沉淀區,使污泥細顆粒在沉淀區的污泥層內進一步絮凝和沉淀,然后回流入污泥床內。UASB內的流態相當復雜,反應區內的流態與產氣量和反應區高度相關,一般來說,反應區下部污泥層內,由于產氣的結果,部分斷面通過的氣量較多,形成一股上升的氣流,帶動部分混合液(指污泥與水)作向上運動。與此同時,這股氣、水流周圍的介質則向下運動,造成逆向混合,這種流態造成水的短流。在遠離這股上升氣、水流的地方容易形成死角。
燒杯實驗
本實驗過程中定期考察污泥中反硝化聚磷菌(denitrifying poly-phosphorus accumulating organism, DPAO)的富集情況.測試方法如下:從反應器中取出5 L泥水混合物于燒杯, 污泥清洗后去除上清液, 加入水和丙酸鈉后, 恢復混合液體積至5 L, 使COD濃度為300 mg·L-1, 厭氧攪拌180 min.靜置后倒棄上清液, 加入水和磷酸二氫鉀, 恢復體積至5 L, 使TP濃度為6 mg·L-1, 再平均分兩份, 對一份進行曝氣, 使其好氧反應, 發生好氧吸磷; 另一份加入硝酸鉀, 使硝酸鹽濃度為20 mg·L-1, 進行缺氧吸磷.實驗過程中定時取樣測缺氧和好氧反應階段的TP濃度.
一次/多次進水-曝氣策略對AGS形成及沉降性能的影響
所示為實驗期間R1和R2內污泥粒徑變化.R1和R2接種污水處理廠絮狀污泥, 平均粒徑為70 μm, 如圖 2(a)所示.隨著反應器運行, R1和R2分別在第19 d和第11 d出現細小顆粒.經56和39 d后, R1和R2的平均粒徑達到340 μm, 認為R1和R2中實現污泥顆粒化, 成功啟動AGS工藝.培養105 d后, R1和R2內顆粒穩定, 平均粒徑達到740 μm和791 μm, 顆粒形態如圖 2(b)和2(c)所示, 與R1相比, R2中顆粒大小相近, 形態更加圓潤, 結構密實.由于R2采用多次進水-曝氣策略, 能在周期內多次為反硝化菌提供碳源, 并在進水后進入厭氧段, 為絮狀污泥提供反硝化所需的厭氧環境, 以便反硝化菌脫氮.與R1采用的一次進水-曝氣策略相比, 多次進水-曝氣策略降低了啟動期間的NO3--N濃度, 減輕NO3--N對PAO釋磷的抑制, 提高了除磷效果.有研究表明, 生物除磷過程中會形成磷酸鹽沉淀和帶正電的微粒, 可作為細胞附著的內核, 成為顆粒生長的“起點”.由此分析, 啟動期間R2中NO3--N濃度低于R1, 除磷效果更好, 易產生磷酸鹽沉淀和帶正電的微粒, 正電微粒能吸附帶負電的細胞體, 可作為顆粒污泥的晶核; 磷酸鹽沉淀可作為細胞附著的內核, 與絮狀污泥通過EPS黏附結合, 形成聚集體, 兩者都可以促進顆粒污泥形成, 故與R1相比, R2的污泥顆粒化時間較短
運行管理
厭氧生物膜反應池的運行管理主要為污泥的定期排放與處置,污泥排放后不能隨意堆置,否則易生蚊蠅,滲漏水會對周邊水體環境造成二次污染。污泥排放量少且污泥濃度低,則建議返回化糞池,進行循環處理;若污泥排放量大或污泥濃度高,則建議跟后續好氧處理設施如氧化溝等排放的污泥一起進行適當的處理處置。
生物過濾除臭原理
Ottengraf等提出了生物膜理論,并建立了模型來描述低濃度有機廢氣的凈化過程。孫石等較早地在國內介紹了Ottengraf模型,并認為惡臭氣體在生物濾池中的吸附凈化一般要經歷以下幾個步驟:
①廢氣中的有機污染物首先同水接觸并溶解(或混合)于水中,即由氣膜擴散進入液膜;
②溶解(或混合)于液膜中的有機污染物在濃度差的推動下進一步擴散到生物膜內,進而被其中的微生物捕獲并吸收;
③進入微生物體內的有機污染物在其自身的代謝過程中作為能源和營養物質被分解,終轉化為無害的化合物。
在凈化過程中,總吸收速率主要取決于氣、液兩相中的有機污染物擴散速率(氣膜擴散、液膜擴散)和生化反應速