詳細介紹
氣浮設備5T/H——氣浮機概述
氣浮機是一種去除各種工業和市政污水中的固體懸浮物、油脂及各種膠狀物的設備。該設備廣泛應用于煉油、化工、釀造、植物油生產與精煉、屠宰、電鍍、印染等工業廢水和市政污水的處理。加壓溶氣氣浮機用途:采用氣液混合泵的加壓溶氣氣浮系統,省略了加壓泵、空氣壓縮機、射流器、高壓溶氣罐、等復雜設置。創造了“一分鐘調試法”。簡單的說就是:出水閥門全開,調節進水閥門 直到壓力表顯示處理系統所需要的壓力,調試就結束。自動氣液分離罐的溶氣系統能自動調節,不僅性能穩定,而且可以頻繁的開機、關機而不需要重新調試,也就是說本溶氣系統只需簡單的調試一次。
氣浮設備5T/H——技術關鍵與特點
1、處理效率高
氣浮處理效率的高低,取決于單位體積溶氣水所能浮起的浮粒子的大絕干重量,我們將其定義為單位浮量,這是溶氣水質好壞的一
項客觀指標??諝鈱儆陔y溶于水的物質,常壓下空氣在水中的溶解度約為1.8%,在O.3Mpa的壓力下,溶解度可達到5.4%,如何讓這些有限的溶解空氣充分發揮作用,是氣浮技術的關鍵。而縮小氣泡的直徑、增大氣泡群密度、改良氣泡群的均勻度,是提高氣浮效率的關鍵,三者互相關聯、互相制約。1個1DOUM的氣泡如果變成等體積的1UM的氣泡,其微量可達到1000000個,所以,在溶解空氣總量一定的前提下,縮小單個氣泡的直徑,既可增大氣泡群密度,同時氣泡群的均勻性也可以得到改善,傳統氣浮效率低,其重要的原因就是因為所產生的氣泡直徑過大,主體氣泡群氣泡的直徑一般都在50UM以上,氣泡群的密度(消能后單位體積溶氣水中所含氣泡個數)一般在108/m3以下,氣泡群均勻性(主體氣泡群數量占氣泡數量的比例)差,直徑大于100UM的氣泡占85%以上,這些氣泡都屬于無效浮選氣泡,而且由于氣泡直徑過大導致氣泡上升速度過快,致使絮凝體遭到沖擊而破裂,浮選效果降低。而本案所產生的微氣泡直徑在1UM左右,密度高于102個/cm。,同時氣泡大小均勻,這就保證了較高的處理效率和非常好的處理效果。 2、溶氣利用率高
本案的溶氣利用率近100%,傳統的渦式氣浮只有10%左右,而早期的氣浮僅為6%左右,氣浮效率的高低,同溶氣效率沒有太大的關系,終取決于溶氣利用率的高低。以溶氣壓力為例,從0.3Mpa提高到0.5Mpa,其溶氣效率多也只能提高一倍,但能耗卻高出好幾倍,以溶氣效果為例,若從50%的溶氣效率提高到100%,其氣浮
效率多也只能提高一倍,但相應的溶氣設備在構造上就要復雜的多,檢修也相應復雜。
研究表明,只有比漂浮粒子(絮凝前的單個粒子)直徑小的氣泡,才能與該懸浮粒子發生有效的吸附作用,在自然水體中,短時間內難以沉淀的懸浮粒子,其直徑大多在IO-30UM,50UM以上的固體懸浮粒子經過幾小時的靜置,可以自然下沉或浮出水面,乳化液粒子直徑在0.25-2.5UM之間,其中少量大顆粒直徑約IOUM左右,所以,1UM左右微氣泡對絕大多數粒子都有很好的吸附用,這也是本案溶氣利用率高的直接原因。
3、處理負荷高
本案可以處理懸浮物(SS)含量高達5000-20000mg/L的廢水,這個指標是任何傳統氣浮所不能達到的。傳統常規氣浮能分離的(SS)含量一般在1000mg/L左右,僅對SS含量在幾百mg/L左右的廢水具有一定的實用價值。
4、簡便實用的溶氣水裝置
本案溶氣罐的設計采用了與傳統理論不同的設計依據,否定了以水力停留時間為主要依據的設計方法,實現了小容積大處理量,為增大氣水接觸面積采用了四級預混合機構,氣、水在極短的時間內即可達到均勻狀態。
5、高效率的氣泡發生器
氣浮設備5T/H傳統氣浮由于其釋放器本身的缺陷和局限性,也對浮選效果產生了致命的影響,如渦凹氣浮采用的是利用高速旋轉的葉輪將吸人的空氣打碎而產生氣泡,且不論高速旋轉的葉輪會同時將絮體攪碎,破壞懸浮物,僅是這種產生氣泡的方式,就決定了這種結構無法產生10UM以下的微氣泡,。因為要通過機械剪切產生微氣泡,首先要克服的是氣泡的表面張力,氣泡越小,其表面張力就越大,要消耗的能量就越高,目前獲得的氣泡直徑小的方法是電解,其次就是壓力溶氣,本案所采用的氣泡發生器,以其合理的設計,實現了空氣從溶氣水到微氣泡的*的轉化,具有以下優勢:
(1)可以大限度的消除溶氣水的能量,也就是說,可以大限度的使溶氣從溶解平衡的高能值降到幾乎接近常壓力的低能值。溶氣水的消能是能量的轉移,而不是能量的消失。大消能,是指獲得物理性能優良的微氣泡的前提下,能量轉換的高值。本案所采用的氣泡發生器的消能比可達99.9%,而普通氣泡發生器只能達到90%。
(2)在獲得大消能比的前提下,具有較快的能量消減速度,也就是說具有短的能量消減時間,即可以在短的能量消減時間內獲得大能量消減比。本案所采用的氣泡發生器的消耗能時間僅為O.01-O.03秒,而普通氣泡發生器較快也得O.3秒。
(3)溶氣水從高能值降到低能值的過程中沒有渦流反沖之類的流態產生。*,微氣泡自形成以后,就伴隨著一系列的氣泡合并作用,合并作用是由表面能的自發減少所決定的,兩個體積相同的泡合并后,其表能減少20.63%。若在釋放器中存在有利于氣泡合并的結構的話,那通過該裝置獲得理想的微氣泡是不可能的。只能杜絕溶器的渦流,反沖,才能從根本上避免微氣泡的合并。