日韩午夜在线观看,色偷偷伊人,免费一级毛片不卡不收费,日韩午夜在线视频不卡片

安科瑞電氣股份有限公司
中級會員 | 第9年

15821596221

云平臺
電量傳感器
BD100系列電量變送器 AKH-0.66SM雙繞組電流傳感器 智能型BA系列電流傳感器 BM200系列隔離式安全柵 AKH-0.66P低壓保護用電流互感器 MP測量保護體電流互感器 AFL-T系列分流器 AKH-0.66/S雙繞組互感器 AKH-0.66/G計量電流互感器 開口式電流互感器 AKH-L-φ序電流互感器 AKH-0.66/Z-75電流互感器 AKH-0.66/K-52電流互感器 AKH-0.66/Z-φ電流互感器 JDG4-0.5 電壓互感器 AKH-3.3/P-φ電流互感器 AKH-0.66/L型電流互感器 AKH-0.66/H型電流互感器 AKH-0.66/J型電流互感器 AKH-0.66/ZD型電流互感器 AKH-0.66/Q型電流互感器 AKH-0.66/EMS型電流互感器 微型電流互感器 保護型電流互感器 三相一體式電流互感器 AKH-0.66/M8型電流互感器 測量型電流互感器 BR系列羅氏線圈電流變送器 雙繞組電流互感器 BA系列交流電流傳感器 剩余電流互感器 ARU系列浪涌保護器 BD系列電力變送器 BM系列模擬信號隔離器 霍爾傳感器
電力監控與保護
ACTB系列電流互感器過電壓保護器 AM系列微機保護裝置 APView500電能質量檢測裝置 ARTU系列三遙單元 ARB5系列弧光保護裝置 AMC可編程電測儀表 多回路智能電量采集監控裝置 防孤島保護裝置 防逆流電能表 小母線監控系統 智能照明控制系統 無線測溫裝置 APV-M系列智能光伏匯流箱 APM系列網絡電力儀表 AGP風力發電測量保護模塊 導軌智能光伏匯流采集裝置 電流互感器過電壓保護器 AMC系列監控裝置 分時計費電能表 導軌式電子式多功能電能表 AM系列中壓保護裝置 ASD系列開關柜綜合測控裝置 WHD系列溫濕度控制器 ARTM系列溫度巡檢測控儀 ASJ系列智能電力繼電器 ALP智能低壓線路保護裝置 ARD系列智能電動機保護器 ARTU系列四遙單元 PZ系列可編程智能電測儀表
電能管理
電能質量治理
電氣安全
系統集成
新能源
智能網關
數據中心

抑制數據中心諧波放大及分布式治理策略

時間:2018/1/30閱讀:1072
分享:

劉建春1. 常帥2. 趙軍3. 洪文瓞 4.洪秋玉5.

(安科瑞電氣股份有限公司,上海 201801)

 

摘要本文主要以某大型數據中心諧波治理為例,闡述數據中心諧波產生的原因和相應的有源電力濾波器諧波治理策略。

關鍵詞智慧能源;UPS;電壓諧波;諧波放大;APF

1、引言

  在實際工程應用中不難發現,由于電力輸配電設施老化、設計不良和供電不足等原因造成末端電壓過低,前端電壓過高,這對電壓要求較高的精密設備造成了很大的威脅。據統計當前公用電網影響用戶用電設備的問題主要有電壓閃變、諧波干擾、電網噪音、頻率漂移、過電壓、欠電壓、斷電及間斷等現象。以上問題不可能在短時間內做出解決,比較現實的解決途徑是在電網和用電設備之間插入個二次供電設備,實現局部高品質的供電環境。般常用的設備為不間斷電源系統UPS,它在我的應用已經非常普遍,廣泛應用于互聯網、數據中心、銀行清算中心、證券交易中心、鐵路的控制中心、監控系統等等核心用電部門。但是由于UPS屬于電力電子設備,正常工作的時候也會產生諧波電流,由于UPS拓撲結構的不同產生的諧波電流頻次和諧波有效值有很大的差異,本文就以大型數據中心的UPS為例,合理分析諧波電流頻次,采用分布式治理的方法,有效抑制諧波電流放大,化電能質量,提高設備用電效率。

2、諧波電壓對電網的影響

2.1  諧波電壓對配電系統的影響

  般來說理想的交流電源是純正弦波形,純正弦的交流電壓加在線性負載兩端,會產生純正弦的交流電流。但是純正弦的交流電壓加在非線性負載兩端,會產生失真的交流電流,同時導致純正弦交流電壓失真。失真的交流電壓無論加在線性負載或非線性負載兩端,都會產生失真的交流電流。

 

 1 某數據中心配電系統測量示意圖(無功柜未投入)

  如圖 1所示,1#主變和2#主變共用段10KV母線,1#主變下UPS1沒有投入運行,主要負載全是線性負載,2#主變下UPS2投入運行,主要負載全是非線性負載,兩邊電容柜沒有投入運行,聯絡柜中聯絡開關始終處于斷開狀態。單獨運行1#主變時,測量點M1處沒有諧波電流和諧波電壓;單獨運行2#主變時,測量點M2處有諧波電流和諧波電壓;同時運行1#主變和2#主變時,測量點M1和M2處都有諧波電流和諧波電壓存在。

2.2  諧波電壓對濾波裝置的影響

  有源電力濾波器從拓撲結構上分為串聯型有源電力濾波器、并聯型有源電力濾波器和混合型有源電力濾波器。目前市場上的有源電力濾波器幾乎都屬于并聯型,并聯型有源電力濾波器主要原理是通過互感器采集被補償負載的電流,通過計算分析提取出負載電流的諧波成分,有源電力濾波器被動輸出反向的諧波電流來抵消系統中的諧波電流,達到諧波補償目的。

2 某數據中心配電系統測量示意圖(增加APF)

  如圖2所示,1#主變和2#主變共用段10KV母線,1#主變下UPS1沒有投入運行,主要負載全是線性負載,2#主變下UPS2投入運行,主要負載全是非線性負載,聯絡柜中聯絡開關始終處于斷開狀態。單獨運行1#主變時,測量點M1處沒有諧波電流和諧波電壓;單獨運行2#主變時,測量點M2處有諧波電流和諧波電壓,開啟APF2補償后,測量點M2處諧波電壓和諧波電流有效值減小;同時運行1#主變和2#主變時,測量點M1和M2處都有諧波電流和諧波電壓存在,單獨開啟APF1,測量點M1和M2處諧波電流和諧波電壓有效值沒有變化,單獨開啟APF2,測量點M1和M2處諧波電流和諧波電壓有效值同時減小。

  上述測試中有種情況比較特殊,在同時運行1#主變和2#主變,單獨開啟APF1進行補償時,雖然濾波器有諧波電流輸出,但是測試點M1和M2處諧波電流和諧波電壓有效值并沒有減小,測量1#主變下線性負載上的電流諧波有效值,有明顯的放大現象。這說明2#主變下非線性負載引起諧波電流失真,導致10KV段電壓失真,失真的電壓加在1#主變的線性負載兩端,使M1點出現了諧波電流和諧波電壓。雖然APF1對線性負載的諧波電流進行了補償,但M1點的諧波電流和諧波電壓不會改變,相對于APF1并線點的網側諧波電流和諧波電壓有效值不變,負載側諧波電流有效值增大。因此,并聯型有源電力濾波器并不能有效濾除電壓諧波引起的電流諧波,相反,會使負載側諧波電流變的更大。

3、諧波分布式治理

  工程中往往諧波的產生是多方面的,非線性負荷引起的諧波、背景諧波、補償裝置諧波放大等等現象,都是引起諧波產生的重要因素。

3 中銀行某數據中心配電系統圖

  如圖3所示,是中銀行某數據中心的配電次圖,正常運行時聯絡柜中母聯斷路器始終保持斷開狀態,T1變壓器和T2變壓器下負載全是12脈沖整流的UPS(T1:SUA2-1、SUA2-2、SUA2-3、SUA5-1、SUA5-2;T2:SUB2-1、SUB2-2、SUB2-3、SUB5-1、SUB5-2),兩臺變壓器所帶負載基本致,前期APF1和APF2沒有投入運行,測量T1變壓器和T2變壓器進線柜諧波電壓電流,如圖4和圖5所示:

4補償前諧波電壓波形及畸變率

5 補償前諧波電流波形及有效值

  從上圖中可以看出,12脈沖整流型UPS輸入側諧波電流應該是以11次和13次為主,但實際側量發現明顯5次、7次諧波非常大。通過對UPS故障排查發現由于12脈沖整流器使用可控整流方式,上下整流橋調相角度不致或上下橋直流輸出帶載不對稱等原因造成了UPS輸入端5次、7次諧波并沒有*抵消,這些沒有抵消的5次、7次諧波經過11次濾波器時諧波被放大,這就出現了我們看到的圖4和圖5的情況。

  為了濾除現場諧波電流,主動斷開所有UPS的11次諧波濾波器濾波支路,增大APF濾波容量,考慮使用APF補償UPS產生的所有諧波頻次。UPS諧波濾波器改造完成后,同時運行APF1和APF2,測量T1變壓器和T2變壓器進線柜諧波電壓電流,如圖6和圖7所示:

6 補償后諧波電壓電流波形

7 補償后諧波電壓電流有效值

  以上數據滿足GB/T 14549-93《電能質量 公用電網諧波》的相關限值。通過對現場系統和負荷特性的了解,分析負荷故障原因,避免了UPS自帶無源濾波器與UPS間的并聯諧振,抑制電流諧波放大;采用分布式補償方案,避免變壓器間電壓畸變引起的電流畸變,從而有效的濾除UPS產生的諧波電流,解決了現場諧波對公用電網的污染問題。

4、結束語

  本文分析了數據中心主要負荷UPS諧波產生的主要原因、UPS內部無源濾波原理、諧波電壓和諧波電流間的互相關系以及在工程項目中如何判斷諧波引起的故障,并提出解決方案,抑制諧波電流的放大,采用合理的補償策略,zui終達到濾除諧波污染的目的。得出結論:

  1.UPS的諧波主要是由相控整流功率器件引起的;

  2.12脈沖整流型UPS上下橋調相角或帶載不對稱時,輸入端11次諧波濾波器會與UPS未抵消的5次、7次諧波電流產生諧振,放大5次、7次諧波電流;

  3.有源電力濾波器APF并不適用于諧波電壓(背景諧波)引起的諧波電流濾波場合;

  4.電能質量化工程項目中,了解現場負荷特性、分析故障根本原因,是解決工程項目諧波治理的必要條件。

文章來源:《電氣時代》2017年12期。

參考文獻:

  [1] 王兆安.諧波抑制和無功功率補償[M]. 北京:機械工程出版社2005(10)

  [2] 能源部電力司.GB/T14549-93電能質量 公用電網諧波[S].北京:中標準出版社,1994.

  [3] 程愛玲. 淺談有源和無源產品在無功補償與諧波治理中的應用[J]. 現代企業教育.2014

  [4] 商少鋒. 電力有源濾波與電容器組無功補償混合應用技術研究[J]. 浙江電力,2007(4)21-24

  [5] 張崇巍,張興.PWM整流及其控制[M].北京:機械工業出版社,2003.

  [6] *,張標標.智慧能源[M].北京:清華大學出版社,2012.

  [7] 高鳳友.無源逆變電源的原理與應用[M].北京:化學工業出版社,2011.

  [8] Zeliang Shu, Yuhua Guo, and Jisan Lian. Steady-state and dynamic study of active power filter with efficient  FPGA-based con-trol algorithm [J]. IEEE Transactions on Industrial Electronics, 2008, 55(4):1527- 1536.

  [9] 曹武. 諧波獨立補償有源濾器關鍵技術研究[D]. 南京:東南大學碩士學位論文,2011.

 作者簡介:

劉建春(1985-),男,甘肅天水人,電氣工程師,從事電能質量類產品設計開發及應用。

會員登錄

×

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

X
該信息已收藏!
標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:

提示

X
您的留言已提交成功!我們將在第一時間回復您~
撥打電話
在線留言
主站蜘蛛池模板: 英超| 方城县| 东至县| 阜阳市| 新乡县| 沂源县| 广昌县| 宁明县| 凤山市| 垫江县| 夏邑县| 望奎县| 安庆市| 古蔺县| 剑河县| 宁武县| 邵阳市| 壶关县| 神农架林区| 阿坝| 呼图壁县| 七台河市| 滕州市| 西峡县| 同仁县| 文成县| 永和县| 浙江省| 紫云| 定陶县| 离岛区| 钟山县| 井冈山市| 吉林省| 阆中市| 吉林市| 南雄市| 桂东县| 文昌市| 丰都县| 周口市|