日韩午夜在线观看,色偷偷伊人,免费一级毛片不卡不收费,日韩午夜在线视频不卡片

安科瑞電氣股份有限公司

充電樁產品
熱銷產品
消防火災類監控系統
電力儀表
電能管理設備
系統集成
安全用電電氣安全
電能管理系統
電力監控與保護
電氣防火限流式保護器 AM系列 AMB智能小母線 AMC系列多回路監控裝置 PZ系列直流檢測儀表 PZ96B系列數顯控制儀表 管廊產品選型 ARTM100在線測溫系統 微機保護裝置 電動機保護器 數顯溫濕度控制器 自復式過欠壓保護器 智能照明控制系統 PZ系列可編程智能電測表 ARDP智能水泵控制器 ARD系列智能電動機保護器 AMC16系列監控裝置 WH系列溫濕度控制器 智能光伏防雷直流柜 M系列中壓保護裝置 AGF-D系列光伏直流采集裝置 APSM直流電源監控系統 AGF系列導軌式智能光伏匯流采集裝置 APV系列智能光伏匯流箱 ADDC智能空調節能控制器 AGP風力發電測量保護模塊 AGF-IM光伏直流絕緣監測裝置 并網逆變器 ACTB電流互感器過電壓保護器 ASD系列開關柜綜合測控裝置 ARTM系列溫度巡檢測控儀 ASJ系列智能電力繼電器 ACM配電線路過負荷監控裝置 ALP智能型低壓線路保護裝置 ARTU系列四遙單元 SVC動態無功補償及濾波裝置 AZG智能配電柜、AZX智能配電箱 ARC功率因數自動補償控制儀 AZX-J低壓智能計量箱 AZX-Z智能照明控制箱
電量傳感器
認證電流互感器 AKH-0.66 J系列計量型電流互感器 AKH-0.66 Z型系列三相導軌式電流互感器 AKH-0.66 W系列電流互感器 電流互感器 ARU系列浪涌保護器 BD系列電力變送器 BM系列模擬信號隔離器 BA系列電流傳感器 BR系列羅氏線圈變送器 AMZK環網柜低壓開合式電流互感器 AKH-L序電流互感器 LMZD-0.66(AKH-0.66ZD)計量型電流互感器 JDG4-0.5電壓互感器 AKH-0.66/H戶外型電流互感器 AKH-3.3/P-φ型中壓電動機保護電流互感器 AKH-0.66/J系列計量型電流互感器 AKH-0.66/D型導軌式電流互感器 霍爾電流傳感器 W微型電流互感器 LQZJ4-0.66(AKH-0.66/Q)型計量用電流互感器 AKH-0.66K圓形開口式電流互感器 AKH-0.66K開口電流互感器 AKH-0.66G計量型電流互感器 AKH-0.66L剩余電流互感器 AKH-0.66S系列雙繞組型電流互感器 AKH-0.66P保護型電流互感器 AKH-0.66 Z型電流互感器 AKH-0.66 M8型電流互感器 AKH-0.66/III 測量型電流互感器 AKH-0.66/II 測量型電流互感器 AKH-0.66/I 測量型電流互感器
電源管理系統之鋰電池管理系統
電能質量治理
電瓶車充電樁
充電器
油煙監測
消防應急照明和疏散系統
火災自動報警
智能網關
學校行業解決方案
新能源相關產品

種應用于交直流不接地系統絕緣監測裝置的設計與開發

時間:2016/12/26閱讀:2495

趙雪蓮1  沈標2  

(1.青海三佳工程設計咨詢有限公司,青海 810000)

(2.安科瑞電氣股份有限公司,上海 嘉定 201801)

 

摘  要: 介紹了種用于工業不接地系統的絕緣監測裝置(IMD),針對現有技術的不足,提供了種新的硬件平臺,可監測400V等級的交直流不接地系統,并詳述了絕緣監測儀的硬件和軟件設計原理。目前該絕緣監測儀已通過試驗驗證,并在市場上大量銷售,為工業不接地配電系統提供了可靠的絕緣監測。

 

關鍵詞: 交直流不接地系統  絕緣監測裝置  自適應  IMD

 

0.前言

    在些對供電連續性要求較高的場所(如:礦井、化工廠、玻璃廠、冶金廠、某些集會場所的照明和某些電爐的試驗設備等),設備故障斷電會帶來巨大的損失,因此采用不接地系統可以有效減少斷電發生的頻率,這是由于在不接地系統*次出現接地故障時,系統還能夠繼續使用,不會出現斷電的狀況,如果*次接地故障是人為導致,則對人體基本沒有太大的傷害,但此時系統已經存在隱患,如果不及時排除故障,當再次出現異相接地故障時,系統就有可能斷電,從而造成嚴重后果。安裝絕緣監測裝置,可以實時顯示系統對地絕緣電阻,在系統*次出現絕緣故障時,發出報警信號,及時提醒維修人員對系統進行故障排查,短時間內無需跳閘,從而保證了IT系統供電的可靠性和連續性[1]。JGJ 16-2008《民用建筑電器設計規范》第7.2.3條規定, IT配電系統必須配備絕緣監視儀[2]。外對此也很重視,在上世紀六十年代,各個發達家已經開始對電力系統的研究,但是其快速發展是在上世紀七十至八十年代。這十年間,數字電路的集成、計算機的迅速發展、各類傳感器的出現推動了電子測量領域的發展。目前內些廠家愈發重視對絕緣監測產品的研究,主流的測量方式有直流信號注入法、交流信號注入法、平衡橋測量法等等。以上測量方式有各自的勢,但由于應用場所環境的差別(泄露電容、直流信號的存在等等)較大,可能存在著測量范圍較窄、測量精度不高、系統中允許泄露電容較低、測量周期長、只能用于交流系統等缺點。本文提出種新型絕緣監測裝置的設計原理,該裝置采用自適應系統頻率的方法,有絕緣電阻測量范圍廣,允許系統泄露電容大,響應快,測量周期短等勢。

 

1.絕緣監測裝置原理概述  

圖1所示為測量電路簡圖:

 

 圖1:絕緣監測裝置原理簡圖

 

    圖1中R1和R3是阻值相等的耦合電阻,R2和R4是阻值相等的采樣電阻,Rf是系統對地電阻,Ce為系統泄露電容,G為信號發生器。電源端的帶電導體不接地,只作設備外殼的保護接地。絕緣監測儀通過G向系統注入+20V和-20V脈沖信號,經過R1、R2 、R3 、R4返回到絕緣監測儀,構成個閉合回路,對R2和R4電壓進行信號處理、采集,即可算出系統對地電阻和系統泄露電容。

 

2.硬件設計

    本裝置硬件電路主要包括處理器模塊、斷線監測模塊、信號注入模塊等。處理器選用ARM cortex-M3內核的單片機,該芯片主頻高,外設豐富,大大簡化了外圍電路的設計。

下面對硬件電路進行討論:

    2.1 信號控制電路

    CPU通過控制模擬開關決定信號的輸出。其中+2.5號來源于基準芯片,-2.5v經+2.5v進行反相后得到,隨后進入信號發生電路。

    2.2 信號發生電路

    信號控制電路中所述的+2.5v或-2.5號經過高壓運放放大后產生+20v或-20v脈沖信號,即為注入不接地系統的信號。

    2.3 信號檢測電路

    信號發生電路中的±20號通過圖1中耦合電阻和系統對地絕緣電阻后構成回路,通過檢測兩個采樣電阻的信號來計算系統絕緣電阻;通過檢測PE上的信號電壓,判斷PE/KE是否斷線;在裝置運行過程中,對系統類型進行實時檢測,根據系統是否存在直流分量選擇適當的測量方法。

    2.3.1 交流系統或離線狀態

    信號從采樣電阻流經截止頻率小于10Hz的低通濾波電路。當系統是交流系統或處于離線狀態時,由于存在的干擾信號主要來源于不接地系統的50Hz信號,而該頻率遠大于該濾波器的截止頻率(小于10Hz),則干擾信號將會衰減到可忽略的幅度,而后通過信號處理電路分別對兩路信號進行相加、放大、抬升,zui終被單片機ADC采樣。

    濾波效果可參考仿真結果。本電路在PSPICE中進行仿真,在L1和L2之間加300V(頻率50Hz)電壓(模擬不接地系統),信號經過四階低通濾波電路前后的效果對比如圖2所示。圖2中波形是注入的±20v與300v系統電壓疊加后的結果,可以看出,300v電壓對采樣電阻上的信號電壓影響很大。參照圖2的下圖可知,經過低通濾波電路以后,300v(頻率50Hz)的信號衰減到可以忽略的幅度。

 

 

 圖2. 濾波前后信號對比

 

    圖2中兩段信號分別是+20V和-20V交叉變換的結果,由于系統存在泄露電容,波形呈現個緩慢充放電的曲線,這個過程也是采樣電阻分壓趨于穩定的過程。而分壓電阻上的zui終電壓只跟系統電壓和其所占比例有關,跟電容無關,故電阻的測量與波形正負半周穩定后的電壓有關,下面簡要陳述計算過程:

 

 

圖3. 兩路信號合成

 

    設圖3中“ADC_R”(采樣電壓)穩定后電壓是V1,此時的“VOUTF”處電V2,“VOUT1”和“VOUT2”電壓V3,則在+20v時,有:

    V1和V2(抬升電壓)已知,可以求出V3。設采樣電阻電壓為V4,由于從V4到V3只有低通濾波電路和個信號抬升電壓V6,低通濾波電路對信號幅度影響很小,則:

 

    V4也是圖1中R2和R4的分壓,設電源電壓V5,則:

聯立①、②、③式,即可求出絕緣電阻Rf。

    電容的計算則依賴于電阻的大小和波形的曲線。假設電壓在關于時間t的波形上存在兩個點M1和M2,對應的坐 標是(V1,t1),(V2,t2)根據電容充電公式:

 

 

對應M1和M2:

處理后有:

在實際計算的過程中,可以多次取點計算,求平均值,提高測量精度。

在-20v時,絕緣電阻Rf和泄露電容計算方式與此類似。

    2.3.2系統存在直流分量

    當系統存在直流分量時,仍然需要四階濾波電路濾除系統交流信號(此時直流信號仍然存在),之后經過個如圖4所示的信號保持電路:

 

 圖4. 信號保持電路

 

    輸入信號分為正、負半周信號,但兩者均含有系統中的直流分量,通過開關的斷開與閉合,可以實現正負半周信號相減,由于系統的直流電壓幅度變化很小,相減后的信號中不再含有直流分量,此時的采樣信號中只是±20V電壓作用在采樣電阻的結果,zui后信號經過放大,進入單片機ADC采樣模塊。進入ADC采樣的波形可以參照PSPICE仿真結果如圖5:

 

圖5. 兩路獨立信號波形

 

    無論是在﹢20v,還是-20v,系統都能獨立監測絕緣狀況,如此,測量周期至少比固定周期產品測量周期小半。直流系統中電阻的計算同交流系統所述樣,電阻的大小取決于波形穩定后的電壓值,電容的計算仍然依賴于電阻,計算方法類似于通過ADC采樣信號可以反推出在+20V和-20V時圖1中R2和R4的分壓,即可求出絕緣電阻值與泄露電容值。

    2.4 儀表其它電路

    除了上述電路外,還有斷線檢測電路(PE/KE斷線、L1/L2斷線檢測功能)、485通訊電路、其他通訊電路等等。

 

3.軟件設計

    3.1 軟件流程

    該絕緣監測裝置采用結構化程序設計思想,采用C語言進行編寫。主函數通過查詢標志位的狀態,決定是否執行對應的模塊,各個模塊的標志位在定時器內改變。這種方式提高了軟件的實時性,后期的軟件維護相對來說也比較方便。

    3.2 自適應頻率

    目前市場上同行產品多數采用向系統注入固定周期信號的方法,這種方式必須考慮系統zui大電阻及電容,測量周期必須滿足zui大電阻和zui大電容的要求,因此這時的周期也是zui長的,且不能改變。自適應頻率是種新型的周期調節的方式,通過監測系統信號波形來調整周期大小。在信號波形上取兩個點的電壓信號,當信號電壓變化很小時,視為穩定,這時翻轉脈沖信號,并保存該周期運行的時間作為下次脈沖的周期。由于在正負半周都會對波形監測和計算,所以信號波形的調整會很及時,電阻的計算結果更新的相對也比較快。此外,旦電阻和電容測量結果穩定,系統會計算理論周期,并與實際測量周期作對比,然后把理論測量周期賦值給下次脈沖周期。該方式保證了在測量結果精度達標的前提下,測量周期能夠達到zui短。

    3.3 響應時間

    IEC61557-8第8部分“IT系統中絕緣監控裝置”中第4.6表1規定,在純交流系統中,當泄漏電容1uF、絕緣電阻為0.5倍報警值時,響應時間應小于10s。在測量精度達標的前提下,本裝置響應速度能小于6s。下面就電阻突變對波形的影響作簡要分析,祥見圖6:

 

 圖6. 故障模擬波形圖

實線:波形   虛線:波形二

 

    t1之前系統周期已經穩定,假設在t1時刻(電壓V1)電阻突然減小到報警值以下,波形發生變化,當到達采樣時刻t2時,測得此時電壓V2,CPU判斷兩者之差大于設定的值,下半周周期加倍,變為2T(之前為T),由于電容很小,系統會在2T時間運行結束之前提前穩定。雖然系統會在周期完成之前提前結束,但響應時間會增大,如果取個完整的正負周期的信號作報警響應的依據,則大大增加了響應時間。為了解決這個問題,系統在半周結束之后計算電阻值(獨立信號),如果該電阻值小于設定的報警值,則發出報警信號,響應值即為圖6中的t2~t1,經實際測試,響應時間基本維持在5s以內,zui長不超過6秒。

    3.4 軟件其它描述

    軟件校準采用線性分段式校準法,共8個校準點,保證了儀表的精度;為了濾除信號中的噪聲干擾,數字濾波依次采用冒泡法(對數據排序)、中位值濾波法、平均值濾波法對數據進行處理,保證了信號的可靠性和穩定性。

 

4.試驗結果

    該產品已通過許昌開普檢驗的的型式試驗,功能和性能均滿足標準要求。經試驗驗證,該儀表在電阻1K-5M、電容0-150uF的條件下,顯示值與實際值的比值均保持在10%以內,測量精度達標,能滿足各種環境中不接地系統絕緣監測的需求。

 

5.結語

    本文介紹了種新型絕緣監測裝置,與市場絕緣監測儀表相比,其勢在于可監測直流不接地系統、允許系統泄露電容大、測量周期短、響應時間短等。經過試驗,本文介紹的絕緣監測裝置在交流、直流不接地系統均可可靠工作,可以為不接地系統提供種可靠的監測。

 文章來源:《智能建筑電氣技術》2016年3期。

 

參考文獻

[1] 王厚余.論it系統的應用.中航天空工業規劃設計研究院(北京).

[2] JGJ 16-2008民用建筑電氣設計規范[S].

[3] 劉平.船舶電氣與通信.*版.北京:海洋出版社,2004.

[4] 王巍,王金全,楊濤,等.低壓IT系統幾個關鍵問題探討[J].建筑電氣,2011(11):47-50.

[5] 馬濤,王金全,金偉,等.三相四線制IT系統絕緣監測技術方案研究[J].船電技術.2008(5):277-280.

[6] IEC 61557-8Electrical safety in low voltage distribution systems up to 1000Va.c.and1500V d.c. - Equipment for testing, measuring or monitoring of protective measures – Part8:Insulation monitoring devices for IT systems

會員登錄

X

請輸入賬號

請輸入密碼

=

請輸驗證碼

收藏該商鋪

X
該信息已收藏!
標簽:
保存成功

(空格分隔,最多3個,單個標簽最多10個字符)

常用:

提示

X
您的留言已提交成功!我們將在第一時間回復您~
在線留言
主站蜘蛛池模板: 武胜县| 台前县| 沧源| 涟水县| 宁波市| 岳普湖县| 仙游县| 凤山县| 紫金县| 吐鲁番市| 祥云县| 阳朔县| 祥云县| 上杭县| 平远县| 新津县| 新密市| 磐石市| 康保县| 嘉义市| 栾城县| 广东省| 获嘉县| 蒙山县| 双辽市| 察隅县| 苍梧县| 南召县| 北宁市| 尚志市| 额尔古纳市| 辰溪县| 佛山市| 万载县| 无极县| 思茅市| 葵青区| 上栗县| 自治县| 嘉祥县| 柘城县|