詳細介紹
腦立體定位儀是神經解剖、神經生理、神經藥理和神經外科等領域內的重要研究設備腦立體定位儀用于對神經結構進行定向的注射、刺激、破壞、引導電極等操作可用于帕金森氏病動物模型建立癲癇動物模型建立腦內腫瘤模型建立學習記憶腦內神經干細胞移植腦缺血等研究。
腦立體定位儀是利用大小鼠顱骨外面的前囟點即Bragma點或其它參考點所規定的三維坐標系統,來確定皮層下某些神經結構的位置,通過固定在立體定位儀操作臂上的在特定三維坐標的神經結構的位置,鉆孔打開顱骨以便在非直視暴露下對其進行定向的刺激、破壞、注射藥物、引導電位等研究。
數字型號的腦立體定位儀能直觀的顯示出定位儀的三維坐標并可以按鍵歸零移動操作臂后顯示特定位置的新的坐標通過選配不同動物適配器可用于不同的小動物實驗。
產品特點
· 操作靈活、簡便標配大鼠適配器;
· 腦立體定位儀標尺是由激光雕刻清晰易讀精確度為0.1mm;
· 腦立體定位儀操作臂移動范圍(上下左右前后)三方向移動距離80mm;
· 垂直方向可90度轉動并隨時鎖定位置;
· 擴充能力很強可增加操作臂增加注射裝置及等;
· 可以根據需要增加不同的固定器用于多種動物;
具有以下優勢
· 標尺易讀數
· 移動平滑
· 調節
· 電生理操作方便
· 配件多樣可選配各種動物適配器麻醉罩以及
標準型大鼠定位儀的主要構造
根據需求不同有多種不同的型號可供選擇單臂型雙臂型數顯型數控型
多種型號可供選擇
標準型大鼠腦定位儀 型號SA-100
數顯大鼠腦定位儀 型號SA-150
數顯雙臂大鼠腦定位儀 型號SA-151
相關配件及可選配件
|
|
大鼠門牙固定適配器 | 小鼠固定適配器 |
|
|
電極夾持器 | 電極、螺帽、注射器夾持器 |
|
|
電極、注射器夾持器 | 微量注射器 |
|
|
|
|
部分參考文獻
1. Albéri, L., Lintas, A., Kretz, R., Schwaller, B., & Villa, A. E. (2013). The calcium-binding protein parvalbumin modulates the firing 1 properties of the reticular thalamic nucleus bursting neurons. Journal of neurophysiology, 109(11), 2827-2841.
2. Sonati, T., Reimann, R. R., Falsig, J., Baral, P. K., O’Connor, T., Hornemann, S., Aguzzi, A. (2013). The toxicity of antiprion antibodies is mediated by the flexible tail of the prion protein. Nature, 501(7465), 102-106.
3. Ali, I., O’Brien, P., Kumar, G., Zheng, T., Jones, N. C., Pinault, D., O’Brien, T. J. (2013). Enduring Effects of Early Life Stress on Firing Patterns of Hippocampal and Thalamocortical Neurons in RatsImplications for Limbic Epilepsy. PLOS ONE, 8(6), e66962.
4. Bell, L. A., Bell, K. A., & McQuiston, A. R. (2013). Synaptic Muscarinic Response Types in Hippocampal CA1 Interneurons Depend on Different Levels of Presynaptic Activity and Different Muscarinic Receptor Subtypes. Neuropharmacology.
5. Bolzoni, F., B?czyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation (tDCS) in the rat. The Journal of Physiology.
6. Bolzoni, F., B?czyk, M., & Jankowska, E. (2013). Subcortical effects of transcranial direct current stimulation (tDCS) in the rat. The Journal of Physiology.
7. Babaei, P., Tehrani, B. S., & Alizadeh, A. (2013). Effect of BDNF and adipose derived stem cells transplantation on cognitive deficit in Alzheimer model of rats. Journal of Behavioral and Brain Science, 3, 156-161.
8. Gilmartin, M. R., Miyawaki, H., Helmstetter, F. J., & Diba, K. (2013). Prefrontal Activity Links Nonoverlapping Events in Memory. The Journal of Neuroscience, 33(26), 10910-10914.
9. Feng, L., Sametsky, E. A., Gusev, A. G., & Uteshev, V. V. (2012). Responsiveness to nicotine of neurons of the caudal nucleus of the solitary tract correlates with the neuronal projection target. Journal of Neurophysiology, 108(7), 1884-1894.
10. Clarner, T., Diederichs, F., Berger, K., Denecke, B., Gan, L., Van der Valk, P., Kipp, M. (2012). Myelin debris regulates inflammatory responses in an experimental demyelination animal model and multiple sclerosis lesions. Glia, 60(10), 1468-1480.
11. Girardet, C., Bonnet, M. S., Jdir, R., Sadoud, M., Thirion, S., Tardivel, C., Troadec, J. D. (2011). Central inflammation and sickness-like behavior induced by the food contaminant deoxynivalenolA PGE2-independent mechanism.Toxicological Sciences, 124(1), 179-191.
12. Hru?ka-Plocháň, M., Juhas, S., Juhasova, J., Galik, J., Miyanohara, A., Marsala, M., Motlik, J. (2010). A27 Expression of the human mutant huntingtin in minipig striatum induced formation of EM48+ inclusions in the neuronal nuclei, cytoplasm and processes. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.
13. Brooks, S., Jones, L., & Dunnett, S. B. (2010). A29 Frontostriatal pathology in the (C57BL/6J) YAC128 mouse uncovered by the operant delayed alternation task. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A10.
14. Yu, L., Metzger, S., Clemens, L. E., Ehrismann, J., Ott, T., Gu, X., Nguyen, H. P. (2010). A28 Accumulation and aggregation of human mutant huntingtin and neuron atrophy in BAC-HD transgenic rat. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A9-A9.
15. Baxa, M., Juhas, S., Pavlok, A., Vodicka, P., Juhasova, J., Hru?ka-Plocháň, M., Motlik, J. (2010). A26 Transgenic miniature pig as an animal model for Huntington’s disease. Journal of Neurology, Neurosurgery & Psychiatry, 81(Suppl 1), A8-A9.