驅動方式電動輸送介質清水揚程10-200流量1L/S-40L/S功率0.55-200認證CCCF
多級泵配套的進出水管道直徑D根據下式選用=1.13Q1/2V-1/2(米),式中V為管內流速,一般進水管V2米/秒,出水管V3米/秒。如采用直徑變化的漸變管時,其漸變部分的長度應大于平均直徑的5~7倍。離心泵和軸流泵的進水管口設在進水池水面以下距離h1處,h1=(1.4~1.6)D1,D1為進水管直徑。軸流泵的葉輪線設在進水池水面以下距離h3處,h2(0.75~D)D0,D0為葉輪直徑。進水管口離池底的高度h0=(0.5~1)D0.單臺多級泵的進水池寬度為(2~3)D1。安裝多臺多級泵的進水池中,相鄰進水管的間距為(3~3.5)D1。進水管至進水池后壁的距離為(1~1.5)D1。為避免浪費揚程,通常將出水管裝在出水池水面以下。中小型多級泵出水管下緣至池底的距離約為10~20厘米;出水管上緣至水面的垂直距離為(1~2)V娤/2g,v2為出水流速(米/秒);出水池長度為(6~12)D2.D2為出水管直徑;出水管與池壁的距離為0.2~0.5米。機械加工精度不夠,原因有很多,有的是機械密封本身的加工精度不夠,這方面的原因容易引起人們的注意,也容易找到。
但有時是多級泵其它部件的加工精度不夠,這方面的原因,不容易引起人們的注意。例如:泵軸、軸套、泵體、密封腔體的加大精度不夠等原因。這些原因的存在對機械密封的密封效果是非常不利的。

單位時間內流體在流動方向過的距離稱為流速,用符號表示,單位為m/s。實驗:流體在管道橫截面上各點的流速并不相同,管的流速快,離越遠,流速越慢,管壁處的流速為零。因此,通常所說的流速是指流體在整個導管截面上的平均流速。與流速的關系如下:u=Q/A(m/s)
與流速的關系式中A-管道的橫截面積,m2。
由于多級泵管道的截面一般是圓形的,若以d表示管子的內徑,則Q=π/4du=0.785du
由上式可知管徑的平方與流速成反比,流速大則所用管材直徑小,可節省投資,但流體流動時遇到的阻力大,會消耗更多的動力,增加日常操作費用;反之,流速小,則投資大而日常操作費用低。適宜的流速,應使投資與操作費用的總和為小。

輪中固體顆粒運動軌跡的明確結論;并且采用統計方法對實驗數據進行分析,確定顆粒在礦用多級泵葉輪進口的運動參數,可以為葉輪的設計和磨損研究提供有益的實驗證據。試驗結果分析:粗、細顆粒對運動軌跡的影響對于密度大于水的顆粒,不論其顆粒大小如何,在從葉輪進口至出口的運動中,都有向葉片工作面靠攏的趨勢,只不過其靠攏的速度和位置不同。對于質量小的細顆粒,其靠攏的速度較慢,一般集中于葉片出口區域和葉片相撞。隨著顆粒質量,其靠攏的速度加快,與葉片相撞的位置向葉片進口移動。對于質量大的粗顆粒,大都與葉片進口部位相撞。大顆粒一進入流道就離開工作面,并不因為質量大,而是與葉片頭部撞擊的結果。從葉片進口處可以看出,由于慣性力作用,粗顆粒在葉片進口處的相對運動角比細顆粒更小,更易向葉片頭部靠攏,與頭部相撞。其中一部分顆粒與葉片頭部相撞后,落到靠近葉片工田愛民,等:礦用多級泵泵葉輪中顆粒軌跡與磨損的關系作面的流道里,由于顆粒與葉片撞擊力的作用,顆粒離開工作面運動,不再與葉片出口工作面相撞。一部分顆粒和葉片頭部相撞后,暫時停止了前進,在這一段時間,這些顆粒和葉片進口邊一起繞泵軸旋轉,獲得一附加礦用多級泵力,而后落入靠近葉片背面的流道。細顆粒由于慣性較小,在葉片進口不會集中向葉片頭部運動,但在流道中運動時不斷偏向葉片工作面,使葉片出口處顆粒濃度,造成該處葉片嚴重磨損。這是由于顆粒進入葉片區之前,要由軸向運動變為徑向運動,很多顆粒與后蓋板內表面相撞。可以認為碰撞是彈性的,能量損失很小,這樣碰撞前后的速度幾乎不變。但是反射角決定碰撞位置,由此造成顆粒進口速度的平均值基本不變,而進口角有一定的離散性。葉輪轉速的影響,葉輪轉速的提高,使顆粒軌跡的包角ψ的統計平均值加大,而顆粒的停留時間變短,隨著轉速的提高,顆粒的慣性加大,顆粒就更趨向葉片壓力面,從而其磨損。

1)提高多級泵的汽蝕性能水平,滿足現場裝置的汽蝕性能的要求。
(2)現場試驗裝置的要求要與泵汽蝕性能水平匹配。
(3)現場安裝和工況調節要給泵創造有利的條件。
(1)多級泵產品在設計過程中,要充分分析振動的來源,以消除振動源。
(2)泵產品的制造裝配過程中,嚴格按標準和操作規程去執行,消除振動源。
(3)多級泵、電機、底座、現場管路等設備在現場安裝時,要嚴格把關,消除振動源。
(4)現場生產、操作、維修、調節時,嚴格把關,消除振動源。