微型稱重傳感器面積效應影響受壓時彈性元件的剛度連續增大,而受拉時則剛度連續減小,這一論點是基于彈性模量保持恒定并與同時發生的密度變化無關的假設。然而,實際上是受壓時彈性模量稍稍增大,受拉時彈性模量稍微減小,結果使得面積效應影響更加嚴重。雖然彈性模量的這種變化很小,以致在一般材料性能試驗中難以檢測出來,但從現代稱重傳感器的準確度等級來說,其影響仍然是顯著的。即使不考慮彈性模量隨應力的變化,我們至少可以估算出由于面積變化引起的非線性誤差。當圓柱式彈性元件的軸向應變每變化 100με 時,面積變化所引起的非線性約為 0.003%。
微型稱重傳感器
由于彈性元件機械加工、熱處理和粘貼電阻應變計等因素影響,稱重傳感器的固有非線性誤差分散較大,不能通過 3 只 ~5 只稱重傳感器進行線性補償試驗,求得線性補償電阻 RL的平均值用于批量生產的線性補償中,必須逐個稱重傳感器進行線性補償。一般線性補償方法為通過經驗公式計算出線性補償電阻值,將其增大 10%~15%就是線性補償半導體應變計的過補償電阻值。進行線性補償時,只需在線性過補償電阻上并聯一個金屬膜線性補償精調電阻,即可精確調整稱重傳感器的線性補償特性,達到線性補償的目的。
法制計量組織 (OIML) 第 60 號建議 2000 年版之前,主要有兩種方法,其一是端點連線法,即以零點和滿載間所連接的直線作為標準擬合線,此方法直觀、簡便,但定義出的非線性誤差較大。其二是小二乘法求出的直線作為標準擬合線,定義出的非線性誤差較小,故比較合理。一個量程為 24.5t 的 C2P1型稱重傳感器,方法定義的非線性誤差為 0.05%,而用第二種方法定義的非線性誤差只有 0.033%,減少了三分之一。線性補償結果告訴我們,只有標準模擬合直線選取的科學合理,才能充分體現線性補償特性。
傳感器靈敏度溫度誤差經典的補償方法是,在惠斯通電橋電路的輸入端串聯一個對溫度敏感的補償電阻 RMt,當環境溫度升高時 RMt增大,盡管供橋電壓 Ui保持不變,但由于電阻分壓作用,使電橋的實際供橋電壓 UAC減小,從而導致靈敏度減小,這就對因溫度升高彈性模量降低靈敏度增大起到補償作用。因為在靈敏度溫度誤差中,βE起主作用,所以國外常把這項補償稱為模數補償。
電阻應變計敏感柵和基底材料以及制造工藝都一樣,圓環式結構比圓柱式和剪切梁式結構的靈敏度溫度誤差要小一些,大約小 6%左右。這說明稱重傳感器靈敏度溫度誤差的影響因素,主要是彈性元件材料的彈性模量E,其次是電阻應變計靈敏系數和制造工藝,在相當小的程度上與稱重傳感器彈性元件的結構有關。對同一種彈性元件結構而言,只要金屬材料、電阻應變計和制造工藝不變,靈敏度溫度誤差的分散度比較小,一般小于 10%,這主要是制造和補償工藝引起的。