日處理10噸一體化生活污水處理裝置
日處理10噸一體化生活污水處理裝置——DO的影響
在好氧段,DO升高,硝化速度增大,但當DO>2mg/L后其硝化速度增長趨勢減緩,高濃度的DO會抑制硝化菌的硝化反應。
同時,好氧池過高的溶解氧會隨污泥回流和混合液回流分別帶至厭氧段和缺氧段,影響厭氧段聚磷菌的釋放和缺氧段的NO-x-N的反硝化,對脫氮除磷均不利。
相反,好氧池的DO濃度太低也限制了硝化菌的生長率,其對DO的忍受極限為0.5~0.7 mg/L,否則將導致硝化菌從污泥系統中淘汰,嚴重影響脫氮效果。所以根據實踐經驗,好氧池的DO為2 mg/L左右為宜,太高太低都不利。
在缺氧池,DO對反硝化脫氮有很大影響。這是由于溶解氧與硝酸鹽競爭電子供體,同時還抑制硝酸鹽還原酶的合成和活性,影響反硝化脫氮。為此,缺氧段DO<0.5 mg/L。
在厭氧池嚴格的厭氧環境下,聚磷菌才能從體內大量釋放出磷而處于饑餓狀態,為好氧段大量吸磷創造了前提,從而才能有效地從污水中去除磷。但由于回流污泥將溶解氧和NO-x帶入厭氧段,很難保持嚴格的厭氧狀態,所以一般要求DO<0.2 mg/L,這對除磷影響不大。
電鍍廢水種類繁多,各種不同的生產工藝也使得廢水的各種特征不盡相同,致使單一的廢水處理技術很難廣泛使用。同時,單一的處理方法很難達到所要求的指標,無法實現處理效果和經濟效益的統一。多元組合技術正是用來解決這個難題,多種技術取長補短,相互促進,終達到較好的處理效果和經濟效益。物化-生物-膜法組合工藝是電鍍廢水治理的主流,其中物化法對電鍍廢水的重金屬離子有很好的去除作用,生物法能有效去除有機物,膜法進一步截留其中的污染物。結合三者對于不同污染物的去除優勢,從而有效降低電鍍廢水的處理成本,提高再生率[23]。另外,其他組合方法也應用廣泛,張彬彬等[24]采用微電解-A/O 工藝處理電鍍廢水,出水中氨氯、總氮和COD 的質量濃度均滿足排放標準,去除*、穩定。Cui J 等[25]采用臭氧氧化-曝氣生物濾池(BAF)工藝處理含氰電鍍廢水,結果表明: CN-、COD、Cu2+和Ni2+的去除率分別為99.7%、81.7%、97.8%和
95.3%,并且出水濃度分別達到了電鍍廢水的排放標準。另外,葡萄糖的添加可以提高生物濾池的污染物去除效率[26]。Ghosh P等[27]提出了電化學法和石灰沉淀的組合方法作為處理含有高
回流污泥量的調整方法有哪些?
按照二沉池的泥位調節回流比。這種方式可避免出現因二沉池泥位過高而造成的去你流失現象,出水水質較穩定,缺點是回流污泥濃度不穩定。
首先根據具體情況選擇一個合適的泥位(水面到泥面距離),即選一個合適的泥層厚度(泥面到池底的距離),一般應控制在0.3~0.9m。且不超過泥位的1/3。然后調節回流污泥量,使泥位穩定在所選定的合理值,一般情況下,增大回流量Qr,可降低泥位,減少泥層厚層;反之,降低回流量Qr,可增大泥層厚度。應注意調節幅度每次不要太大,使回流比變化不超過5%,回流量變化不超過10%,具體每次調多少,多長時間后再調下一次,則應根據情況決定。
按照沉降比調節回流量或回流比。
公式為:R=SV/(你好-SV)
以你好0ml量筒取進入二沉池之前的曝氣池混合液模擬二沉池的沉降試驗。則由測得的SV30值可以計算回流比,用經指導回流比的調節。
為使SV值充分逼近二沉池內的實際狀態,盡可能采取二沉池即攪拌狀態下的沉降比,以提高回流比控制的準確性。
按照回流污泥及混合液的濃度調節回流比。
公式為:R=MLSS/(RSSS-MLSS)
此法可用回流污泥濃度RSSS,和混合液濃度MLSS指導回流比R的調節。此公式只適合低負荷工藝,即進水的懸浮物不高的情況下,否則會造成誤差。一般作為回流比的校核方法。
該工藝為生物、生態和化學的組合處理工藝,污水依次通過調節厭氧池、動態膜生物反應器和人工濕地,動態膜生物反應器混合液回流至調節厭氧池,人工濕地中添加脫氮除磷的功能填料,該工藝適應了公路服務區污水水質水量變化大、氮磷污染物濃度高的特點,達到穩定達標的要求。該工藝中采用動態膜生物反應器為好氧處理裝置,將反應區、污泥區和清水區集成于一個反應器中,適應了公路服務區用地緊張的特點,同時為該裝置與調節厭氧池和人工濕地的組合提供了條件。
總體工藝流程
常溫結晶分鹽*脫硫廢水處理工藝由石灰軟化、常溫結晶-納濾 (ATC-NF) 分鹽與二價鹽回收、電滲析-反滲透 (ED-RO) 極限膜濃縮、蒸發結晶一價鹽回收等四個主要單元和加藥、脫水等輔助單元組成
脫硫廢水首*入石灰軟化單元, 通過投加石灰、有機硫、絮凝劑等, 去除懸浮物、鎂離子、重金屬等。石灰軟化出水送入特殊設計的常溫結晶器 (ATC) , 與納濾濃水混合并根據需要補充硫酸鈉后, 在常溫下結晶析出硫酸鈣, 固液分離后得到高品質石膏產品。ATC出水在特殊阻垢劑的保護下超濾處理后加壓進入納濾單元, 實現以氯化鈉為主的一價鹽和以硫酸鈣為主的二價鹽的分離, 納濾濃水返回ATC循環處理。
主要含氯化鈉的納濾產水則進入ED-RO極限膜濃縮單元, 得到可以回用的RO產水和濃縮至鹽的質量分數為18%~20%的ED濃水。ED濃水送入蒸發結晶單元, 結晶后得到高純度氯化鈉產品。為了保證氯化鈉的純度, 極少量母液從蒸發結晶單元排出, 單獨拌灰或固化處理。
2 工藝特點與技術優勢
相較于現有工藝, 常溫結晶分鹽*工藝主要的特點是*采用了ATC-NF單元和ED-RO單元
ATC-NF單元的引入, 同步實現了1、2價鹽的分離與2價鹽回收的目的, 氯化鈉進入NF產水, 硫酸鈣被NF濃縮并在ATC中結晶[24]。ATC-NF單元為系統提供了穩定的鈣離子出口, 消除了碳酸鈉軟化深度除鈣的必要性, 從而在典型水質條件下, 可在石灰-硫酸鈉-碳酸鈉軟化的基礎上將藥耗成本進一步降低40%~50%。ATC-NF單元還降低了預處理化學污泥產量, 實現了硫酸鈣的回收, 從而大幅提高了整個系統結晶鹽的資源化率。
ED-RO單元結合了均相膜ED在高鹽度下優異的濃縮性能和RO在低濃度下杰出的脫鹽性能。與RO不同, ED的濃縮極限不受滲透壓限制, 采用合適的均相膜可以達到20%。相較于濃縮極限為12%的DTRO, ED-RO以更低的投資和大致相當的能耗, 將蒸發水量減少了40%, 這也使得*系統的整體投資與運行能耗進一步顯著降低。