低溫等離子體中的化學反應主要是通過氣體放電產生的快電子激發來完成的。這些快電子與氣體分子碰撞,使氣體分子激發到更高的能級。被激發到高能級的分子,由于其內能的增加,既可發生鍵的斷裂也可以與其它物種發生化學反應;而由于碰撞失去部分能量的電子在電場的作用下仍可得到補償。典型的反應類型如下:
| 電子/分子反應 | ||
激發 | e + A2→ A2+ + 2e | ||
離解 | e + A2→ 2A + e | ||
附著 | e + A2→ A2 | - | |
離解附著 | e + A2→ A- + A | ||
電離 | e + A2→ A2+ + 2e | ||
復合 | e + A2 | -→ A2 | |
離脫 | e + A2-→ A2 + 2e | ||
| 分子/原子反應 | ||
潘寧離解 | M* + A2→ 2A + M | ||
潘寧電離 | M* + A2→ A2+ + M + e | ||
電荷轉移 | A+ + B → B+ + A | ||
離子復合 | A+ + B-→ AB | ||
中性復合 | A + B + M → AB + M | ||
| 分解反應 | ||
電子的 | e + AB → A + B + e | ||
原子的 | A* + B2→ AB + B | ||
| 合成反應 | ||
電子的 | e + A → A* + e | ||
| A* + B → AB | ||
原子的 | A + B → AB | ||
可以看出,低溫非平衡態等離子體是使分子活化的有效方法,它能使幾乎所有的分子激發、電離和自由基化,產生大量的活性基團,如O、OH、O2,O3和高能量的自由電子。這些活性物種使得在通常條件下難以實現的反應可以很容易地在等離子體系統中完成。尤其對空氣中污染物的脫除,可以在很短的時間內使其分解甚至*分解。研究表明,等離子體分解空氣污染物可通過兩種途徑完成:
(1)在產生等離子體的過程中產生的瞬間高能量,打開某些有害分子的化學鍵,使其分解成單質原子或無害分子。
(2)等離子體中包含了大量的高能電子、離子、激發態粒子(其能量范圍如表 1)和具有強氧化活性的自由基,這些活性粒子的平均能量高于氣體分子的鍵能,它們和有害氣體分子發生頻繁的碰撞,打開氣體分子的化學鍵,同時產生的大量?OH、HO2、O等自由基和氧化性*的 O3 跟有害氣體分子發生化學反應生成無害產物。
低溫等離子凈化器工藝流程:
氣體收集系統—預處理噴淋洗滌系統—低溫等離子凈化系統—深度氣體吸附催化系統—排放系統—控制系統氣體收集系統主要是將構筑物自由揮發的氣體收集起來并輸送到后續處理系統。具體包括氣罩系統、管道輸送系統和風機。
低溫等離子凈化器工作原理:
廢氣處理中洗滌系統用來和廢氣在洗滌塔內進行預處理化學反應,去處粉塵且通過化學反應后的氣體達到廢氣一級凈化處理,具體包括填料、噴淋裝置、脫水層、風機、加藥系統等。
低溫等離子凈化器內部裝有*的碰吸單元,截留去除廢氣中的顆粒物質,廢氣收集系統收集的多元素氣體經過等離子活性氧凈化裝置,在高壓等離子電場的作用下,電離初始態氧將其中的廢氣離子進行電離荷電凈化,帶電的微小離子(塵埃粒子)被吸附單元所收集并流入和沉積到氣體處理裝置的儲塵箱內,氣體內的有害氣體被電場內所產生的臭氧所殺菌,并去除了異味,有害氣體被除掉,達到廢氣處理的目的。
吸附催化凈化處理裝置是一種干式廢氣處理設備。由箱體和裝填在箱體內的吸附單元組成,吸附單元根據廢氣處理要求添加催化劑達到進一步去處異味氣體的目的。控制系統主要用來控制系統開機、停運,并對系統運行效果進行檢測,反饋系統的運行狀態和技術參數,從而使設備處于良好運行狀態,實現無人值守。