污水處理設備,潤盛水處理設備有限公司專業生產、研發。
我們處理過的污水有:生活污水、醫療污水、洗滌污水、屠宰污水、餐飲污水及類似的工業污水等。
只要到我們公司詢價,我們可幫助你們選型、報價、做方案、技術指導等諸多服務。
潤盛環保 滄州市農村一體化污水處理設備可以貨比三家,比較一下們的價格、我們的質量,我們的服務。
什么是污泥的厭氧消化?與高濃度廢水的厭氧處理有何不同?
污泥的厭氧消化是利用厭氧微生物經過水解、酸化、產甲烷等過程,將污泥中的大部分固體有機物水解、液化后并終分解掉的過程。產甲烷菌終將污泥有機物中的碳轉變成甲烷并從污泥中釋放出來,實現污泥的穩定化。
污泥的厭氧消化與高濃度廢水的厭氧處理有所不同。廢水中的有機物主要以溶解狀態存在,而污泥中的有機物則主要以固體狀態存在。按操作溫度不同,污泥厭氧消化分為中溫消化(30~37℃)和高溫消化(45~55℃)兩種。由于高溫消化的能耗較高,大型污水處理廠一般不會采用,因此常見的污泥厭氧消化實際都是中溫消化。
污泥厭氧消化池的基本要求有哪些?
(1)采用兩級消化時,一級消化池和一級消化池的停留時間之比可采用1:1、2:1或3:2,其中以采用2:1的多:一級消化池的液位高度必須能滿足污泥自流到一級消化池的需要,地下水位較高時、必須考慮池體的抗浮,對消化池進行清理時好選擇地下水位較低的時候進行。
(2)污泥厭氧消化池一般使用水密性、氣密性和抗腐蝕性良好的鋼筋混凝土結構,直徑通常為6~35m,總高與直徑之比為0.8~1.0,內徑與圓柱高之比為2:1。池底坡度為8%,池頂距泥面的高度大于1.5m,頂部集氣罩直徑一般為2m、高度為1~2m、大型消化池集氣罩的直徑和高度好分別大于4m和2m。
(3)污泥厭氧消化池一般設置進泥管、出泥管、上清液排出管、溢流管、循環攪拌管、沼氣出管、排空管、取樣管、人孔、測壓管、測溫管等,一般進泥管布置在池中泥位以上、其位置、數量和形式應有利于攪拌均勻、破碎浮渣,污泥管道的小管徑為150mm,管材應耐腐蝕或作防腐處理,同時配備管道清洗設備。
(4)上清液排出管可在不同的高度設置3~4個、小直徑為75mm,并有與大氣隔斷的措施;溢流管要比進泥管大一級,且直徑不小于200mm,溢流高度要能保證池內處于正壓狀態;排空管可以和出泥管共用同一管道;取樣管小直徑為100mm,至少在池中和池邊各設一根,并伸入泥位以下0.5m;人孔要設兩個,且位置合理。
(5)池四周壁和頂蓋必須采取保溫措施。
污泥厭氧消化池的影響因素有哪些?
(1)溫度、pH值、堿度和有毒物質等是影響消化過得的主要因素、其影響機理和厭氧廢水處理相同。
(2)污泥齡與投配率。為了獲得穩定的處理效果,必須保持較長的泥齡。有機物降解程度是污泥齡的函數,而不是進泥中有機物的函數。
(3)污泥攪拌。通過攪拌可以使投加新鮮污泥與池內原有成熟污泥迅速充分地混合均勻,從而達到溫度、底物濃度、細菌濃度分布**,加快消化過程,提高產氣量。同時可防止污泥分層或泥渣層。
(4)碳氮比C/N。厭氧消化池要求底物的C/N達到(10~20):1佳,一般初沉池污泥的C/N約(9.4~10.4):1,可以單獨進行厭氧消化處理,二沉池排出的剩余活性污泥的C/N約為(4.6~5):1,不宜單獨進行消化,應當與初沉池混合提高碳氮比后再一起厭氧消化處理。
高濃度氨氮廢水處理的物化法
1.1 吹脫法
在堿性條件下,利用氨氮的氣相濃度和液相濃度之間的氣液平衡關系進行分離的一種方法。一般認為吹脫效率與溫度、pH、氣液比有關。
王文斌等對吹脫法去除垃圾滲濾液中的氨氮進行了研究,控制吹脫效率高低的關鍵因素是溫度、氣液比和pH。在水溫大于25 ℃,氣液比控制在3500左右,滲濾液pH控制在10.5左右,對于氨氮濃度高達2000~4000 mg/L的垃圾滲濾液,去除率可達到90%以上。吹脫法在低溫時氨氮去除效率不高。
王有樂等采用超聲波吹脫技術對化肥廠高濃度氨氮廢水(例如882 mg/L)進行了處理試驗。工藝條件為pH=11,超聲吹脫時間為40 min,氣水比為l000:1試驗結果表明,廢水采用超聲波輻射以后,氨氮的吹脫效果明顯增加,與傳統吹脫技術相比,氨氮的去除率增加了17%~164%,在90%以上,吹脫后氨氮在100 mg/L以內。為了以較低的代價將pH調節至堿性,需要向廢水中投加一定量的氫氧化鈣,但容易生水垢。同時,為了防止吹脫出的氨氮造成二次污染,需要在吹脫塔后設置氨氮吸收裝置。
Izzet等在處理經UASB預處理的垃圾滲濾液(2240 mg/L)時發現在pH=11.5,反應時間為24 h,僅以120 r/min的速度梯度進行機械攪拌,氨氮去除率便可達95%。而在pH=12時通過曝氣脫氨氮,在第17小時pH開始下降,氨氮去除率僅為85%。據此認為,吹脫法脫氮的主要機理應該是機械攪拌而不是空氣擴散攪拌。
1.2 沸石脫氨法
利用沸石中的陽離子與廢水中的NH4+進行交換以達到脫氮的目的。沸石一般被用于處理低濃度含氨廢水或含微量重金屬的廢水。
然而,蔣建國等探討了沸石吸附法去除垃圾滲濾液中氨氮的效果及可行性。小試研究結果表明,每克沸石具有吸附15.5 mg氨氮的極限潛力,當沸石粒徑為30~16目時,氨氮去除率達到了78.5%,且在吸附時間、投加量及沸石粒徑相同的情況下,進水氨氮濃度越大,吸附速率越大,沸石作為吸附劑去除滲濾液中的氨氮是可行的。
Milan等用沸石離子交換法處理經厭氧消化過的豬肥廢水時發現Na-Zeo、Mg-Zeo、Ca-Zeo、k-Zeo中Na-Zeo沸石效果好,其次是Ca-Zeo。增加離子交換床的高度可以提高氨氮去除率,綜合考慮經濟原因和水力條件,床高18cm(H/D=4),相對流量小于7.8 BV/h是比較適合的尺寸。離子交換法受懸浮物濃度的影響較大。
應用沸石脫氨法必須考慮沸石的再生問題,通常有再生液法和焚燒法。采用焚燒法時,產生的氨氣必須進行處理。
1.3 膜分離技術
利用膜的選擇透過性進行氨氮脫除的一種方法。這種方法操作方便,氨氮回收率高,無二次污染。
蔣展鵬等采用電滲析法和聚丙烯(PP)中空纖維膜法處理高濃度氨氮無機廢水可取得良好的效果。電滲析法處理氨氮廢水2000~3000 mg/L,去除率可在85%以上,同時可獲得8.9%的濃氨水。此法工藝流程簡單、不消耗藥劑、運行過程中消耗的電量與廢水中氨氮濃度成正比。PP中空纖維膜法脫氨效率>90%,回收的硫酸銨濃度在25%左右。運行中需加堿,加堿量與廢水中氨氮濃度成正比。
乳化液膜是種以乳液形式存在的液膜具有選擇透過性,可用于液-液分離。分離過程通常是以乳化液膜(例如煤油膜)為分離介質,在油膜兩側通過NH3的濃度差和擴散傳遞為推動力,使NH3進入膜內,從而達到分離的目的。用液膜法處理某濕法冶金廠總排放口廢水(1000~1200 mgNH4+-N/L,pH為6~9),當采用烷醇酰胺聚氧乙烯醚為表面活性劑用量為4%~6%,廢水pH調至10~11,乳水比在1:8~1:12,油內比在0.8~1.5。硫酸質量分數為10%,廢水中氨氮去除率一次處理可達到97%以上。
生物處理工藝分好氧和厭氧兩種,常規的處理技術中以好氧活性污泥法為主,其中曝氣池和二沉池是主要構筑物,曝氣池則處核心地位;厭氧處理技術則包括厭氧接觸法和UASB。下面隨微水會小編一起學習下吧…
好氧活性污泥法的正常運行,除需要在曝氣池內保持足夠數量的活性污泥外,還需充足的溶氧,且保持活性污泥處于懸浮狀態。因此,曝氣的目的就是將空氣中的氧強制溶解到曝氣池混合液中,并提供適宜的攪拌;或將其中不需要的氣體和揮發性物質釋放于空氣中。潤盛環保 滄州市農村一體化污水處理設備