氧分析儀,具有良好的安全性能,操作靈活簡便。這種探測器的一個主要的特點是它的自動校準功能,可以通過帶背光的液晶顯示屏上的提示一步步地引導操作者進行校準。紅外線氣體探測器提供三種不同的輸出方式:模擬信號4~20mA直流電;RS-485通訊接口及3個繼電器(兩個報警,一個故障自檢)。可對警鈴進行現場調試和編程。這些不同的輸出方式為系統建立提供了大的靈活性。則只提供4~20MA直流電的輸出。控制電路以微處理芯片為基礎,封裝成一個即插型模塊并被連在標準的連接模板上。傳感器及信號發生器被安裝在一個防爆機殼內,機殼上有玻璃罩。帶有背光的數字顯示屏既可顯示傳感器讀數也可在編程時顯示菜單功能。所有的紅外線氣體探測器都屬于電器分類:Class I; Groups B, C, D; Division 1。這種產品系列延續了在氣體傳感器設計中體現的“易于安裝、易于維護”的理念。
氧分析儀探測器被封裝在防爆金屬外殼內。外殼上旋著一個帶玻璃的蓋子。位于變送器面板上的磁性編程按鈕可通過手持的磁性編程工具對其進行操作,這就保證了傳感器界面操作的無干擾性。所有的校準和現場調試都可在不開蓋,保持現場原有狀態的情況下進行。
一臺氣體分析儀或一套氣體分析系統相當于一套完整的化工工藝設備,因此,氣體分析儀器系統工作過程就是在實現一系列的化工過程。若想通過氣體分析得到準確數據,就必須了解這一系列化工過程中各階段的情況及變化,認真研究并掌握其中的規律,只有這樣才能達到準確測定的目的。
DLAS技術本質上是一種光譜吸收技術,通過分析激光被氣體的選擇性吸收來獲得氣體的濃度。它與傳統紅外光譜吸收技術的不同之處在于,半導體激光光譜寬度遠小于氣體吸收譜線的展寬。因此,DLAS技術是一種高分辨率的光譜吸收技術,半導體激光穿過被測氣體的光強衰減可用朗伯-比爾(Lambert-Beer)定律表述式得出,關系式表明氣體濃度越高,對光的衰減也越大。因此,可通過測量氣體對激光的衰減來測量氣體的濃度。
分析儀按照光學系統劃分,可分為雙光路和單光路兩種:
(1)雙光路:從兩個相同光源或一個精確分配的單光源,發出兩路彼此平行的光束,分別通過分析氣室后和參比氣室后進入檢測器。
(2)單光路:從光源發出單束紅外光,利用切光裝置將紅外光調制成不同波長的光束,輪流通過分析氣室進入檢測器。