904L鋼板執行什么標準,目的研究哈氏合金C-276在溴膠溶液中的耐蝕性能,分析哈氏合金C-276在溴膠溶液中的腐蝕及失效機理。方法采用掛片試驗方法,模擬溴化丁基橡膠生產過程中溴膠混合釜的腐蝕環境,研究溫度、液溴含量、水含量、轉速等環境因素影響哈氏合金C-276的腐蝕規律,利用SEM、XRD等現代分析技術,對腐蝕產物形貌、成分進行分析。結果哈氏合金C-276在含溴腐蝕溶液中的主要腐蝕產物為NiBr2、FeBr2、MoBr2、CrBr3等。
對加熱至沸點以下的和低濃度的硫酸腐蝕也有相當的抗力。Haynes625是以Mo,Nb為主要強化元素的固溶強化合金,從低溫到1095℃溫度范圍內具有良好的強度和韌性,在650℃以下具有良好的疲勞性能,在空氣中高達980℃還有很好強度和剝蝕能力,因而多應用在高溫和場合,作噴氣發動機部件,航宇結構部件和化工設備。Haynes公司將Haynes625合金歸入了耐熱合金系列。
不同材質中重要的是元素組成,原始狀態下的奧氏體晶粒都非常細小,隨保溫時間延長,晶粒明顯長大,晶界的數量在減少,出現的孿晶也較多,有些孿晶甚至貫穿整個晶粒,保溫時間延長,位錯密度變小,晶界遷移率變大,晶粒長大速度加快,這樣為夾雜物的境界富集,晶界處元素含量增加提供了條件,碳、氮化物的存在及其在奧氏體內的固溶不僅可以起到細化晶粒的作用,還對晶界和位錯的運動有釘扎的作用;
焊接接頭形式(l)在某電廠煙氣脫硫項目中,C276與人口煙道焊接接頭采用了搭接形式(如圖1示),搭邊量控制在25~左右(*使用此范圍)。(2)不難發現,在實際運用中,C276主要存在2種焊接接頭類型,分別為:Q235B+C276和C276+C2760哈氏合金C276人口煙道碳鑰璧圖1坪接接頭形式2.2.3焊接方法及參數基于以表1的C276焊接方法和焊接參數上分析,終確定了C276的焊接方法和焊接參數如表1所示。表1C276的焊接方法焊接參數接頭類型焊接方法焊材焊接焊。
現在,HastelloyC除在某些鑄造材料中使用外已基本上被淘汰。1.2HastelloyC-276在HastelloyC-276出現之前阻礙C合金發展的大障礙是需要進行焊后固溶處理,而焊接是絕大多數設備制造的加工過程。焊接使焊縫及熱影響區的耐蝕性能急劇下降。HastelloyC-276為此難題提供了解決方案。由于極低的C、Si含量,焊接熱影響區的耐蝕性能幾乎與基體金屬相同。在1965年C-276一推出迅速成為Haynes公司的拳頭產品之一。
選材的經濟性與許多因素有關,其中主要的是耐蝕性和格兩個方面。材料的耐蝕性能與材料的使用壽命直接相關,但并非壽命長的或者價格低的材料使用經濟。選材上應從工況環境、材料性能、材料及設備制造價格、設備操作工藝、維修、生產諸方面綜合考慮,正確選擇材料,以求獲得佳的經濟效果。由于哈氏合金C276不僅耐腐蝕性能*,而且較錯材造價便宜,所以本文就哈氏合金C276材料在高速泵上的應用進行了研究。下面介紹該材料的一些性能。
本裝置吸收塔換熱器的冷卻水為直漉水。因哈氏合金1)276板片要求冷卻水中的氯離子含量≤100t,g/g。而我廠循環水中的氯離子含量超過100t~g/g.現將清江水經無閥濾池過濾后供吸收塔換熱器使用。該直流水經換熱后溫度達到35"C左右,直接供浴室使用.回收利用了一部分熱量。干燥塔和吸收塔的板式換熱器采用循環水。由一套專設的循環水系統供應。3酸配蕾板式換熱器設有硫酸進出口接管和冷卻水進出口接管。
采用高頻引弧,焊接時焊把盡量垂直焊件,以更好地控制熔池大小,而且可使氬氣均勻保護熔池而不被氧化。采用小電流、快焊速,降低熱輸入,防止熱量集中產生裂紋。焊把要一直擺動,擺動幅度不超過焊絲直徑的三倍,起到攪拌熔池的作用。圖2焊件充氣保護示意焊接時,鎢部距離焊件2mm,焊絲要順著坡口沿管子切線方向送到熔池前端,待焊絲熔化,兩邊稍作停留,焊絲均勻地、連續地送入熔池向前移動。在焊接時,焊絲端部要始終在保護氣體中,防止氧化而生成雜質。
一種在工業生產中的重要部件,目前有色金屬冶煉行業和鋼鐵制造,使用的鋼管數量占了總銷量的近70%,石油化工行業和機械制造業的鋼管需要量大約占總銷量的10%左右,一些輕工業對鋼管的需求量占了總銷量的約15%,一些高新領域對高壓鋼管的需求也有所增加。高頸鋼管是面心立方結構,具有耐高壓和良好的耐熱、耐蝕性,具有良好的綜合力學性能和耐蝕性能,對焊鋼管形狀還可以增加鋼的韌性,不同的工藝,鋼管的臨界脆性轉變溫度20℃,精密鋼管對Cu、Fe、Cr、Mo等元素要求很高,ZRJWXTG可以冷加工強化;
化學成分中C(促形成晶間腐蝕)和Si(加速p相形成)的含量較低,且C、Si含量越低,晶間腐蝕傾向越小,因而具有較強的耐腐蝕性。(2)熔點較低。(3)熱導率比碳鋼低,電阻比碳鋼高,這對C276焊接性及焊接規范的選擇具有一定的影響。2C276焊接工藝目前,我國關于C276方面的相關技術資料還不夠健全,這給C276在工程上的實際運用帶來一定困難。為此,我們將C276在國內某電廠煙氣脫硫項目實際運用中所采用的焊接工藝歸納如下。
美國SuperPower公司與LosAlamos實驗室的合作研究[13]中,在使用AFM測量SDP工藝的基底表面粗糙度時,分別使用了1,5和20μm3種掃描尺度。LosAlamos實驗室與韓國的合作研究[14]中,對非晶態氧化釔薄膜的表面粗糙度隨著薄膜層數的變化采用了5和50μm兩種掃描尺度分別進行對照比較。日本ISTEC實驗室使用AFM測量對IBAD-MgO過渡層表面粗糙度的研究[15]中,也使用了20,100,500nm3種尺度進行分別的對照比較來研究沉積時間的影響,這個研究中還引入了分形幾何來對表面粗糙度隨著掃描尺度的變化進行了初步分析。