17CrNiMo6管件_熱壓管件_鍛制管件,焊接之前,需要附加固定焊來保證兩塊搭接的薄板緊密貼合。這些固定焊的長度通常非常小(長約6mm,間距75mm)。間隙過大會增加密封焊損壞的可能,易造成系統泄漏。焊接過程中,采用手工焊時對根部焊縫的背部做磨光處理;采用氬弧焊焊接時宜采用100氬氣保護。應嚴格控制焊接線,采用小電流快速焊接,同時輔以銅墊板等措施來提高焊縫的冷卻速度,避免過熱輸入,否則不僅在焊接熱影響區容易產生一定程度的退火和晶粒長大,還可能產生過度的偏析、碳化物的沉淀等有害的冶金現象,從而引起熱裂紋或降低材料的耐蝕性。
哈氏合金的成分以鎳、鉬、鉻為主,與釔鋇銅氧超導薄膜的熱膨脹系數非常接近,它具有優良的機械性能,對許多酸性物質都有優良的抗腐蝕能力,而且性很強[3]。而且與多數鎳基合金不同,HastelloyC276是非鐵磁性的。哈氏合金的以上特點使它非常適于作為代高溫超導導線的金屬基底。在IBAD技術路線用于代高溫超導導線制備研究中,金屬基底和過渡層的表面粗糙度一直是各個研究單位的關注要點。
按材質分為很多種,有鎳鉻基系、鎳鐵基系、鎳鈷基系,其中有耐氯化物腐蝕的鎳鉻合金,如鈦粉行業中就會大量應用這種鎳基合金,此類合金擁有成熟的生產工藝及加工工藝,規格齊全產品多樣,打破了一些關鍵設備受局限的問題,國內多數航天、化工等行業中的部分設備的零部件已經廣泛的采用該合金,良好的焊接工藝性,成熟的制造流程,使得國內外需求量增大,機械性能*,在氯化物行業有著不可替代的作用;
在高氧化性環境下,僅含鉻16的C-276和C-4均不能提供耐蝕性,這種缺點被其他合金的發展所克服,如C-22和VDM59等。1.4HastelloyC-221982年,當合金C-276在美國注冊到期時,合金C-22被推了出來。合金C-276和C-4在氧化性非鹵化物的溶液中腐蝕很快,因為它們的鉻含量是C類合金中低的。針對氧化性環境需要一種高鉻合金,且Cr、Mo、W達到優化平衡,這樣就獲得一種有高耐蝕性和良好熱穩定性能的合金。根據這一指導思想,誕生了合金HastelloyC-22。
應力速率與溫度的關對圖1中的實驗測得的應力曲線用二次延遲函數進行擬合,并推算到無限長時間后的殘余應力,可以HastelloyC-276合金在相應溫度下的應力極限。將750,800,850和900℃4個溫度下的應力極限繪于圖4中。從圖中可以看出,隨著溫度的升高,應力極限顯著降低,對圖4中的數據進行擬合,HastelloyC-276合金的應力極限與溫度的經驗關系式:ABT(7)式中:T為溫度,為應力極限,A和B為常數,其數值分別為521.3MPa和0.533MPa·℃-1。
焊接時,坡口表面油脂、氧化物、油漆等異物沒有清理干凈,或保護氣體種類不當、純度不高、流量不合適等,則易產生焊接氣孔,晶間腐蝕C276在敏化溫度600℃~1200℃之間,停留時間長,超過10min,就會析出δ相及M6C,從而產生晶間腐蝕。C276管焊接工藝坡口制備及清理管子切割用機械方法,坡口加工采用坡口機或砂輪打磨,焊前清理*油、漆等所有雜質,清理范圍為坡口兩側及背面50~100mm,包括鈍邊、坡口內側,清理方法可用或酒精等溶劑擦洗,擦洗完畢,用不銹鋼絲刷刷凈清理。
焊接時,焊絲受熱端部未在氫保護中。(4)線過大。2.4焊接檢驗按以上工藝完成焊接后,工作并沒有就此結束,還應對焊接質量進行檢驗,這對確保c276焊接質量具有舉足輕重的作用。2.4.1外觀檢驗(l)焊腳高度O一2~為宜。(2)外觀成形美觀,無咬邊、氣孔和裂紋等缺陷。2.4.2探傷檢驗施焊完畢,表面所有焊縫經酸洗后,進行探傷檢驗。(l)著色檢驗。表面進行100著色探傷(尤其是角焊繃,達到J理I’473于20051級要求為合格。
在高達1000℃以上,不銹鋼鋼管材料具有遠比合金鋼管更優良的抗氧化性,同時在還原性的酸中具有良好的耐蝕性,合金中的高Ni保證了它耐堿性溶液的腐蝕,在高溫環境中普通不銹鋼不能保持高強度的時候,鎳基合金強度依然沒有什么變化,能應對多種負責的高溫環境,高溫高壓環境中耐腐蝕能力*,經過電渣重熔工藝,鋼錠質地純凈,無有害雜質,開坯鍛造性能良好,成材率高,成本降低,市場價格一直平穩,ZRJWXTG喜得國內外的喜愛;
焊縫熱影響區的腐蝕傾向對于Ni-Cr-Mo系鎳基合金來說,焊材選擇合理的前提下,在某些特殊腐蝕介質中,焊縫熱影響區發生腐蝕的幾率高于焊縫區。因為焊縫熱影響區在高溫狀態下有可能會發生合金燒損,Cr、Mo等碳化物沉淀,引起晶界貧Cr、貧Mo而造成在某些介質中的晶間腐蝕及應力腐蝕,所以,Ni-Cr-Mo合金焊接時,應盡量縮短在高溫的停留時間,以避免Cr、Mo等元素損失。試板焊接時反面采用99·999Ar進行保護,并且在焊前約1min提前通入氬氣。
采用高頻引弧,焊接時焊把盡量垂直焊件,以更好地控制熔池大小,而且可使氬氣均勻保護熔池而不被氧化。采用小電流、快焊速,降低熱輸入,防止熱量集中產生裂紋。焊把要一直擺動,擺動幅度不超過焊絲直徑的三倍,起到攪拌熔池的作用。圖2焊件充氣保護示意焊接時,鎢部距離焊件2mm,焊絲要順著坡口沿管子切線方向送到熔池前端,待焊絲熔化,兩邊稍作停留,焊絲均勻地、連續地送入熔池向前移動。在焊接時,焊絲端部要始終在保護氣體中,防止氧化而生成雜質。
合金系列材質成份:17CrNiMo6管件_熱壓管件_鍛制管件
很多金屬鋼管材料在化學成份相同的情況下,內部微量元素不同使得材料的力學性能、耐蝕性能以及耐高溫性能產生較大差異,因此合金中微量元素的分析就變得至關重要,微量元素一般含量較低,往往很難利用常規的技術分析手段對其進行準確分析,隨著技術的發展,可采用高溫下使微量元素擴散的方法形成富集區域富集點,從而在很大程度上檢測到更多的微量元素,微量元素、組織以及電解拋光參數的變化;
化學成分中C(促形成晶間腐蝕)和Si(加速p相形成)的含量較低,且C、Si含量越低,晶間腐蝕傾向越小,因而具有較強的耐腐蝕性。(2)熔點較低。(3)熱導率比碳鋼低,電阻比碳鋼高,這對C276焊接性及焊接規范的選擇具有一定的影響。2C276焊接工藝目前,我國關于C276方面的相關技術資料還不夠健全,這給C276在工程上的實際運用帶來一定困難。為此,我們將C276在國內某電廠煙氣脫硫項目實際運用中所采用的焊接工藝歸納如下。
美國SuperPower公司與LosAlamos實驗室的合作研究[13]中,在使用AFM測量SDP工藝的基底表面粗糙度時,分別使用了1,5和20μm3種掃描尺度。LosAlamos實驗室與韓國的合作研究[14]中,對非晶態氧化釔薄膜的表面粗糙度隨著薄膜層數的變化采用了5和50μm兩種掃描尺度分別進行對照比較。日本ISTEC實驗室使用AFM測量對IBAD-MgO過渡層表面粗糙度的研究[15]中,也使用了20,100,500nm3種尺度進行分別的對照比較來研究沉積時間的影響,這個研究中還引入了分形幾何來對表面粗糙度隨著掃描尺度的變化進行了初步分析。