
研究利用單晶衍射數據對MIL-68(Al)的衍射圖樣進行了優化模擬.由XRD表征結果可以看到,實驗得到的衍射峰與優化模擬得到的衍射峰具有*的相似度,說明MIL-68(Al)材料制備成功,并且具有較高的純度.圖 2 MIL-68(Al)的XRD(a)、FTIR表征圖(b)、N2吸附脫附曲線(c)、孔徑分布圖(d)和SEM圖(e、f)MIL-68(Al)材料的表面官能團分析結果如圖 2b所示,3665 cm-1處為MIL-68(Al)結構中的μ2—OH的伸縮振動(Seoane et al., 2013);3446 cm-1處的寬峰為自由水中的O—H振動;2550 cm-1和2520 cm-1處為H2BDC中C—H振動;1300 ~1700 cm-1之間的振動峰為有機橋聯
抗生素i的去除率; cj, i:j工藝中抗生素i的濃度, ng?L-1; cj+1, i:j工藝后續工藝中抗生素i的濃度, ng?L-1; η總, i:水廠各工藝對抗生素i的總去除率; c原水, i:原水中抗生素i的濃度, ng?L-1; c出水, i:出水中抗生素i的濃度, ng?L-1.為探討抗生素在給水管網中的衰減規律, 假設其符合一級動力學模型:(2)式中, c:濃度, ng?L-1; t:時間, min; c0:物質的初始濃度, ng?L-1.衰減系數(K)為:(3)式中, v:水流速, m?s-1; L:取樣點i與i+1之間的距離, m; ci:取樣點i處抗生素的濃度, ng?L-1.1.4 健康風險評價方法人群通過飲食(主要指飲水)途徑
, 可望為新型重金屬廢水處理劑制備條件的優化提供技術參考.2 實驗部分(Experimental section)2.1 試劑與儀器試劑:聚丙烯酰胺(PAM, 相對分子質量為24萬)、甲醛(HCHO, AR)、巰基乙酸(TGA, AR)、鹽酸(HCl, AR)、氫氧化鈉(NaOH, AR)、*(KBr, GR)、含銅水樣(CuCl2?2H2O與自來水配制).儀器:恒溫磁力攪拌器(JB-2型, 上海雷磁新涇儀器有限公司), pH測試儀(Orion 828型, 美國奧立龍中國公司), 電子天平(FA2004N型, 上海精密科學儀器有限公司), 程控混凝實驗攪拌儀(TS6-1型, 武漢恒嶺科技有限公司), 傅立葉變換紅外分光光度計(IR Prestige-21
組合的工況下, 可使填料濃度達到*.分析其原因, 由于折流板的存在, 折流板上部區域為曝氣死區, 實驗中發現大量的填料在升流區形成了內循環, 且存在諸多小循環, 即由于折流板的存在, 折流式膜生物流化床為內外雙循環和諸多小循環(圖 2c);另一原因是由于進水管的布置會使底部堆積的填料進行向左的沖擊, 當沖擊到曝氣區或環流區后, 填料將隨氣液上升形成環流.填料的流態化使得填料之間、填料與膜組件之間相互摩擦, 并使液相流態更加紊亂, 填料濃度和液相紊亂程度越大, 起到沖刷膜組件的作用越大, 能較大程度地抑制膜組件表面沉積層的形成,
min-1升至300℃, 保持5 min.1.3 質量控制用空白樣品和平行樣品對處理和測定過程進行質量控制與保證. OCPs回收率在78.4%~105.7%之間, OPPs回收率在81.2%~108.3%之間, 方法空白未檢出目標污染物.1.4 評價模型采用USEPA的污染物暴露模型對北京市各地下水檢測樣點OCPs和OPPs所引起的成人健康風險進行健康風險評價.其中致癌風險值CR(cancer risk)計算公式為:(1)如果CRi計算結果大于0.01, 則按高劑量暴露方程計算:(2)經直接飲水途徑引起的非致癌風險指數HI(health risk index)計算公式為:(3)通過飲水途徑暴露的人日均暴露劑量(Di)計算公式:(4有利于控制膜污染, 即填料濃度是膜污染控制一個重要因素.因此, 設計時膜組件放置高度可選擇為折流式膜生物流化床升流區的上部靠近自由液面區域.3.2 四邊形折流式膜生物流化床升流區液相流動特征湍流是一種高度復雜的不規則流動.張波濤等(2001)應用PIV技術對水泵吸水池的內部流場進行測量, 對40幅照片顯示的速度矢量數據進行處理, 得到了流場的湍動能.本文對同一位置的40幅連續的照片所顯示的速度矢量圖進行分析, 可以計算出每個面上各個點的速度標準偏差, 公式如下:(1)(2)式中, urms為徑向速度的標準偏差, vrms為軸向速度的標準偏差.得到應部分、氣浮分離部分(含清水箱)、溶氣水制備系統、刮渣部分、電控部分組成。該設備為鋼結構,外形尺寸為:L×B×H=3.5m×2.55m×2.4m,處理污水量為15m3/h。實際廠方購買了1臺處理污水量為10m3h的氣浮設備。4實際治理效果根據浙江海門制藥廠所提供1996年12月~1998年3月份的監測記錄表,在進水量為10m3/h,水溫35℃~36℃的情況下,各處理構筑物的CODCr指標采用加權平均法進行整理,其結果詳見表1。表1各處理單元進出水CODCr指標日期項目厭氧反應器生物接觸氧化池氣浮凈水器總去除率%進水出水去除率%進水出水去除率%進水出水去除率%注:從漩渦強度云圖可以看出, 渦核貼近導流錐向流化床底部移動, 流化床底部出現大量小尺度渦結構.圖 5 流化床下部區域兩種不同條件下的液相流動特征 (a, e.速度矢量圖, b, f.流線圖, c, g.渦量圖, d, h.漩渦強度圖)曝氣強度和進水流量為0.65 m3?h-1、200 L?h-1工況的液相流動特征從圖 5e~h可見:該工況下, 低速區和高速區交織在一起, 且高速區域面積較小, 低速區面積較大.流線整體呈紊亂狀態, 升流區出現較多小尺度渦旋結構.渦量正值區域面積和負值區域面積較接近, 且呈正負交織的狀態.導流錐、流化床底部和折流板左邊出現大量小尺度渦結構.對分析.1.2 常規指標檢測常規檢測項目包括pH、濁度、總有機碳(TOC)、總磷(TP)、氨氮(NH4+-N)、硝酸鹽氮(NO3--N)、亞硝酸鹽氮(NO2--N).檢測方法按照《生活飲用水標準檢驗方法》(GBT 5750-2006)進行.同時還測量了水中有機物在254 nm波長紫外光下的吸光度(UV254)和溶解氧(DO)兩個指標, UV254采用紫外分光光度計(UV765, 上海佑科儀器儀表有限公司提供)測量, 用以表征水中天然存在的腐殖質類大分子有機物以及含C=C雙鍵和C=O雙鍵芳香族化合物的含量. DO采用便攜式DO溶解氧測定儀(JPBJ-608, 上海儀電科學儀器股份有限公司)測定.1.3 有機物檢測 1.3.湖南婁底那里產城市污水處理設備企業屬離子(如:Ca2+、K+、Na+和Mg2+等)與沸石結合并不緊密, 易與溶液中的NH4+發生交換. 靜電吸附.當NZ-MgO投加到溶液中, 材料表面的高度活性納米MgO易在固液界面發生原位水解, 形成, 反應方程式如式(3)所示, 在該條件下溶液中磷酸鹽的主要存在形式為H2PO4-和HPO2-4[23], 所以溶液中的磷酸鹽極易被材料表面的正電荷所吸引, 而氨氮易被排斥. ④化學沉淀.根據有關研究可知[19, 24], 前3種機制對溶液中磷酸鹽和氨氮的回收能力有限, 其主要回收方式是鳥糞石沉淀法.水解產物在溶液中可以釋放一定量的Mg2+, 直至材料表面的[Mg2+]和[OH-]達到飽和[Ksp
計算得到不同人群總致癌風險值(男性5.64×10-7, 女性5.45×10-7)和總非致癌風險(男性5.78×10-4, 女性5.59×10-4)都處于可接受風險水平.3 結論(1) 通過對天津市A水廠和B水廠中10種目標抗生素的檢測分析, 兩水廠的抗生素在各處理工藝單元中呈現出了不同的分布特征. A水廠對抗生素的總去除率為-46.47%~45.10%, 其中起主要作用的是混凝工藝. B水廠的總去除率為40.25%~70.33%, 紫外+氯消毒階段對抗生素的去除效果好, 預臭氧+混凝沉淀工藝次之.而過濾工藝在A、B兩個水廠中對抗生素的去除效率低.結果表明B水廠的深度水處理工藝對抗生素類物質的處
Freundlich等溫式對實驗數據進行擬合, 擬合結果如圖 5、圖 6、?